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Multiple sparse priors for the M/EEG inverse problem
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This paper describes an application of hierarchical or empirical Bayes
to the distributed source reconstruction problem in electro- and
magnetoencephalography (EEG and MEG). The key contribution is
the automatic selection of multiple cortical sources with compact
spatial support that are specified in terms of empirical priors. This
obviates the need to use priors with a specific form (e.g., smoothness or
minimum norm) or with spatial structure (e.g., priors based on depth
constraints or functional magnetic resonance imaging results).
Furthermore, the inversion scheme allows for a sparse solution for
distributed sources, of the sort enforced by equivalent current dipole
(ECD) models. This means the approach automatically selects either a
sparse or a distributed model, depending on the data. The scheme is
compared with conventional applications of Bayesian solutions to
quantify the improvement in performance.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

Bayesian approaches to the inverse problem in EEG represent
an exciting development over past years (see Baillet and Garnero,
1997; Russell et al., 1998; Sato et al., 2004; Jun et al., 2006;
Nagarajan et al., 2006; Daunizeau et al., 2007; Nummenmaa et al.,
2007 for some important developments). A special instance of
Bayesian analysis rests on empirical Bayes in which spatial priors
are estimated from the data. Parametric empirical Bayesian (PEB)
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models are simple hierarchical linear models under parametric
assumptions (i.e., additive Gaussian random effects at each level).
Their hierarchical form enables one level to constrain the
parameters of the level below and therefore act as empirical priors
(Efron and Morris, 1973; Kass and Steffey, 1989). In the context of
the EEG inverse problem, the parameters correspond to unknown
source activity and the priors represent spatially varying constraints
on the values the parameters can take. PEB models furnish priors
on the parameters through hyperparameters encoding the covar-
iance components of random effects at each level. However, these
models can also be extended hierarchically by inducing hyper-
priors on the hyperparameters themselves (see Trujillo-Barreto
et al., 2004; Sato et al., 2004; Daunizeau and Friston, 2007). This is
the hierarchical extension considered in Sato et al. (2004) and
evaluated using sampling techniques in Nummenmaa et al. (2007).
Under these models, it is possible to estimate the inverse variance
(i.e., precision) of each prior, even when the number of
hyperparameters exceeds the number of observations. Sato et al.
used this to estimate an empirical prior precision on a large number
of sources on the cortical mesh. This estimation used standard
variational techniques to estimate the conditional density of the
parameters and precision hyperparameters. In this context, non-
informative gamma hyperpriors on the precision of random effects
are also known as automatic relevance determination or ARD
priors (Neal, 1998; Tipping, 2001). This approach gives better
results, in terms of location and resolution, compared to standard
minimum norm estimators.

The approach taken here uses covariance as opposed to
precision hyperparameters (see also Wipf et al., 2006). This has
two advantages: first the fixed-form variational scheme used for
estimation reduces to a very simple and efficient classical
covariance component estimation based on ReML (Patterson and
Thompson, 1971, Harville, 1977; Friston et al., 2007). This means
one can consider a large range of models with additive covariance
components in source space (e.g., different source configurations)
using exactly the same variational scheme (i.e., there is no need to
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1 Although we anticipate further developments to cover full hierarchical
models for multiple subject analysis and non-stationary spatial priors.
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derive special update rules for different components). Second, one
avoids the improper densities associated with non-informative
ARD priors based on the gamma density (see Gelman, 2006).

Empirical Bayes

Previously, we have described the use of parametric empirical
Bayes (PEB) to invert electromagnetic models and localize
distributed sources in EEG and MEG (Phillips et al., 2002a,b,
2005). Empirical Bayes provides a principled way of quantifying
the relative importance of spatial priors that replaces heuristics
like L-curve analysis. Furthermore, PEB can accommodate
multiple priors and provides more accurate and efficient source
reconstruction than its precedents (Phillips et al., 2002a,b). After
this, we explored the use of PEB to identify the most likely
combination of priors using model selection, where each model
comprises a different set of priors (Mattout et al., 2006). This
was based on the fact that the restricted maximum likelihood
(ReML) objective function used in the optimization of the model
parameters is the log-likelihood, lnp(y|λ,m), of the covariance
hyperparameters, λ for a model m and data y; a model is defined
by its covariance components associated with activity over
sources. We have since applied the ensuing inversion schemes to
evoked and induced responses in both EEG and MEG (see
Friston et al., 2006).

Finally, we showed that adding the entropy of the conditional
density on the hyperparameters to the ReML objective function
provides a free energy bound on the log-evidence or marginal
likelihood lnp(y|m) of the model itself (Friston et al., 2007).
Although this result is well-known to the machine learning
community, it is particularly important here because it means one
can use ReML within an evidence (i.e., free energy) maximiza-
tion framework to optimize the parameters and hyperparameters
of electromagnetic forward models. The key advantage of ReML
is that optimization can proceed using the sample covariance of
the data in measurement or channel space, which does not
increase in size with the number of sources. The result is an
efficient optimization, which uses classical methods, designed
originally to estimate Gaussian covariance components (Patterson
and Thompson, 1971). The ensuing approach is related formally
to Gaussian process modeling (Ripley, 1994; Rasmussen, 1996;
Kim and Ghahramani, 2006), where empirical Gaussian process
priors are furnished by a hierarchical (PEB; Kass and Steffey,
1989) model.

Model selection and ARD

The fact that ReML can be used to optimize a bound on the
marginal likelihood or evidence means that it can be used for
model selection, specifically to select or compare models with
different Gaussian process priors. Furthermore, under simple
hyperpriors, ReML selects the best model automatically. This is
because the hyperpriors force the conditional variance of hyper-
parameters to zero, when their conditional mean is zero. This
means the free energy is the same that one would obtain with
formal model comparison. In short, ReML can be used to
estimate the hyperparameters controlling mixtures of covariance
components in both measurement and source space that generate
data. If there are redundant components, ReML will automatically
switch them off, or suppress them, to provide a forward model
with the greatest evidence or marginal likelihood. This is an
example of automatic relevance determination (ARD). ARD
refers to a general phenomenon, in hierarchical Bayesian models,
where maximizing the evidence (often through EM-like algo-
rithms) leads to pruning away of unnecessary model components
(see Neal, 1996, 1998).

Recently, Wipf et al. (2006) provided an extremely useful
formulation of empirical Bayesian approaches to the electro-
magnetic inverse problem and show how existing schemes “can
be related via the notion of automatic relevance determination
(Neal, 1996) and evidence maximization (MacKay, 1992)”. The
approach adopted here conforms exactly to the principles
articulated in Wipf et al. and re-iterates the generality of free
energy or evidence maximization. Wipf et al. (2006) also
consider particular maximization schemes, based on standard
variational updates, under inverse gamma hyperpriors. We use an
ReML scheme, which is much simpler and uses log-normal
hyperpriors. This allows us to use the Laplace approximation to
the curvatures of the log-evidence during optimization (Friston et
al., 2007).

In summary, this paper takes the application of ReML to the
EEG inverse problem to its natural conclusion;1 instead of using a
small number of carefully specified prior covariance components
(e.g., Laplace, minimum norm, depth constraints etc.) we use a
large number of putative sources with compact (but not neces-
sarily continuous) support on the cortical surface. The inversion
scheme automatically selects which priors are needed, furnishing
sparse or distributed solutions, depending on the data. This
provides a graceful balance between the two extremes offered by
sparse ECD models and the distributed source priors implicit in
weighted minimum norm solutions (see also Daunizeau and
Friston, 2007). Critically, the inversion scheme is fast, principled
and uses a linear model, even when sparse ECD-like solutions are
selected.

Overview

This paper comprises three sections. In the first, we present the
theory and operational details of the inversion scheme. We then
compare its performance to existing applications using distributed
constraints and simulated EEG data. In the final section, we
illustrate its application to a real data set that is available at http://
www.fil.ucl.ac.uk/spm.

Theory

This section describes the model and inversion scheme. In brief,
we use ReML to estimate covariance hyperparameters at both the
sensor and source levels. Once these hyperparameters have been
optimized, the posterior mean and covariance of the parameters
(source activity) are given by simple functions of the data and
hyperparameters. Here, ReML can be regarded as operating in an
evidence optimization framework, which leads to ARD phenomena
and the elimination of redundant sources. We will show exactly
how a Laplace approximation to the posterior of the hyperpara-
meters allows one to invert models with multiple sparse priors,
quickly and efficiently.

http://www.fil.ucl.ac.uk/spm
http://www.fil.ucl.ac.uk/spm
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A parametric empirical Bayes model

We start with a hierarchical linear model of EEG or MEG data
Y∈Rn×s over n channels and s samples.2

Y ¼ Lhþ Xbþ 1
h ¼ e

1fNð0;V ;R1Þ
efNð0;V ;ReÞ

R1ðkÞ ¼ expðk11ÞQ1
1

ReðkÞ ¼ expðke1ÞQe
1 þ N þ expðkemÞQe

m

ð1Þ

where L=Rn×d is a known gain or lead-field matrix and θ=Rd×s

are the unknown source dynamics at d dipoles. We have also
included some confounds, X and their parameters, β as fixed effects
in this model. X could be a column of ones, which restricts the
estimation of covariance components to data that are mean
corrected over channels (i.e., re-referenced to the mean). The
terms ς and ε represent random fluctuations in channel and source
space respectively. Their temporal correlations are denoted by V,
which, for simplicity, we assume are fixed and known. Their
spatial covariances are mixtures of covariance components Q=
{Qς,Qε} at each level, controlled by unknown hyperparameters,
λ={λς,λε}. The first-level hyperparameters λς encode the
covariance of measurement or sensor noise; here we will consider
only one component, Qς= I, noting that independence over
channels does not preclude serial correlations over time. Similarly,
λε encodes the contribution of multiple empirical covariance priors
Qε on the sources. Note that we are parameterizing the covariance
components in both sensor and source space in exactly the same
way. The scalar function exp(λi

ε) returns the covariance scale
parameters as a non-negative function of the hyperparameters. Eq.
(1) allows us to specify a full generative model whose parameters
and hyperparameters we seek to infer. This model comprises a
likelihood and priors:

pðyjh; b; kÞ ¼ NðLhþ Xb;V ;R1ðkÞÞ

pðhÞ ¼ Nð0;V ;ReðkÞÞ

pðkÞ ¼ Nðg;P�1Þ ð2Þ

with flat priors on the parameters of the confounds. Note that this
model entails the specification of hyperpriors; p(λ)=N(η,Π− 1)
with mean η and precision Π. It is these (shrinkage) hyperpriors
that lead to ARD and automatic model selection (see below).

Empirical priors

Under a given lead-field and the form of spatiotemporal corre-
lations in the noise, the model is defined by the number and com-
position of the empirical priors on the sources;Qε={Q1

ε,…,Qm
ε }. It is

these priors and the ensuing model space we want to explore. The
number of components could range from one, e.g., Qε= I as a
classical minimum norm model, to thousands, with one component
2 Where we use a matrix-normal notation ς∼N(0,V,Σς)⇔vec(ς)∼N(0,
V⊗Σς) to denote a multivariate Gaussian density on a matrix and ⊗ is the
Kronecker tensor product.
for each source (cf. Sato et al., 2004; Wipf et al., 2006). The
composition of each component encodes the a priori deployment of
source activity, for example, Qε=KKT=G (where K=Rd×d is a
spatial convolution matrix) would correspond to a smooth or
coherence prior, a component with off-diagonal terms could model
two correlated sources and so on. In fact, we can model a distributed
pattern of sources, qi=R

d×1 with a separate covariance component,
Qi
ε=qiqi

T. In this framework, the conventional minimum norm prior
Qε= I encodes the highly improbable prior that sources are
expressed everywhere, are of equal amplitude and are never
correlated. We will show that there are much better a priori models
for EEG responses. We will focus on source components with
compact support and introduce the idea of modeling correlated
sources explicitly, with components that have two ormore regions of
compact support.

The basic idea behind this approach is that any combination of
prior components can be optimized and, critically, different
combinations can be compared using their evidence (i.e., using
Bayesian model comparison). If each component corresponds to a
mixture of patterns; i.e., Qe

i ¼
P

jai qjq
T
j , we face the problem of

searching a large model space, where each model corresponds to
one partition of the patterns. Clearly, the number of partitions is
enormous, ranging from one component with m patterns to m
components with one pattern. These extremes could correspond to
a minimum norm constraint and ARD respectively. In our current
software implementation, we provide two approaches to this
problem; first a greedy search that successively splits the
component with the highest variance (hyperparameter) into two,
using the activity (parameter) of the component's constituent
patterns. The hyperparameters of the new partition (i.e., model) are
optimized and the procedure repeated until the evidence stops
increasing (this procedure is described in Friston et al., 2007).
Alternatively, one can start with one component per pattern and use
ARD to eliminate patterns. This effectively assigns redundant
patterns to a null component with negligible variance. In short, the
greedy search starts with one component and considers increasing
numbers, while the ARD scheme starts with the maximum number,
which it tries to reduce; both are guided by the model evidence. In
this paper, we focus on the second (ARD) approach. In what
follows, we describe how the model parameters and hyperpara-
meters are optimized and how this furnishes the model evidence.

Model inversion

Inversion of this model proceeds in two variational steps that,
for linear models of this sort, corresponds to expectation maxi-
mization (EM; Dempster et al., 1977): an E-step optimizes the
parameters, holding the hyperparameters constant and the M-step
optimizes the hyperparameters, holding the parameters constant.
The reason that there are two steps is that we assume that the
conditional density on the parameters and hyperparameters can be
factorized. In statistical physics, this is called a mean-field
assumption. In what follows, we will eliminate the parameters by
substituting the source level into the sensor level of the model. This
means we only have to iterate the M-step to optimize the
hyperparameters. In this instance, the E-step reduces to a single
operation, after the M-step has converged.

First, the model is reduced by projection using spatial U and
temporal S projector matrices (cf. Phillips et al., 2002a,b). The
temporal matrix defines a temporal subspace spanned by the
signal; in our implementation, we use the principal eigenvectors of
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the sample covariance matrix over time.3 The temporal projection
can also incorporate any band-pass filtering (we use 1→64 Hz).
The spatial projector would normally be the residual forming
matrix, U= I−XX− that restricts the estimation to the null space of
confounds,4 hence ReML. This gives a simplified model in which
the confounds disappear because UTX=0:

Ỹ ¼ L̃ θ̃ þ ς̃
θ̃ ¼ ε̃

ς̃fNð0; Ṽ; Σ̃1Þ
ε̃fNð0; Ṽ;ReÞ

Σ̃1ðkÞ ¼ expðk1ÞUTQ1U
Ṽ ¼ STVS ð3Þ

where Ỹ ¼ UTYS L̃ ¼ UTL h̃ ¼ hS 1̃ ¼ UT1S ẽ ¼ eS.
Notice that the spatial projection in channel or sensor space

only affects the first-level terms and does not change the spatial
priors on source space, encoded by Σε. This reduction projects all
the spatiotemporal information in Ỹ∈Ru×v into u spatial and v
temporal modes.

Second, the source level is projected onto measurement space to
give random effects that are a mixture of first-level and second-
level components

Ỹ ¼ L̃ε̃þ ς̃

ỸfNð0; Ṽ; Σ̃Þ
RðkÞ ¼ expðk1ÞQ1 þ N þ expðkmþ1ÞQmþ1

Q ¼ UTQ1U; L̃Qe
1L̃

T
; N ; L̃Qe

mL̃
T

k ¼ k1; ke1; N ; kem ð4Þ

Eq. (4) is exactly the same as Eq. (3) but we have eliminated the
parameters by substituting the second level into the first. This
means we can dispense with the E-step because only the hyper-
parameters remain. Furthermore, we have reduced the problem to
estimating the covariance components of the (projected) data,
which can proceed in channel space as opposed to high-dimen-
sional source space (cf. Gaussian process modeling). In this form,
the covariance components from the source level are now simply
covariance components L̃Qi

εL̃T of the data.
Finally, the moments of the hyperparameters are estimated

iteratively in an M-step that is formally equivalent to ReML. These
are then used to evaluate the conditional density of the parameters
(in a single E-step) and a bound on the model evidence. ReML or
restricted maximum likelihood was introduced by Patterson and
Thompson (1971) as a technique for estimating variance compo-
nents, which accounts for the loss in degrees of freedom that result
from estimating fixed effects (Harville, 1977). Here, we simply
supplement ReML with Gaussian hyperpriors; p(λ)=N(η,Π−1),
converting the maximum likelihood estimates into conditional
modes (and the ReML objective function into a free energy bound
3 The principal vectors are defined operationally as those eigenvectors
whose normalized eigenvalues are greater than 1 /512 (cf. the Kaiser
criterion). This generally retains over 99% of the data variance.
4 Or the principal singular vectors of the adjusted data, Y−XX−Y; if one

wanted to put an upper bound on the number of spatial modes. X− is the
generalized inverse of X.
on the log-evidence). Gaussian hyperpriors are equivalent to
placing log-normal priors on the scale parameters. Critically, as the
conditional mode of the scale parameter exp(μi

λ) goes to zero, so
does its conditional variance and the corresponding component is
switched off, enabling ARD.

Under a Laplacian fixed-form assumption the conditional
density of the hyperparameters is simply q(λ)=N(μλ,Σλ), where
μλ and Σλ are the conditional mode or expectation and covariance
of the hyperparameters respectively. Under this assumption the free
energy bound on the log-evidence is

F ¼ � v
2
trðRðAkÞ�1

CÞ � v
2
lnjR Ak

� �j � uv
2
ln2p

þ 1
2
lnjRkPj � 1

2
Ak � gÞTP Ak � g

� �� ð5Þ

where C ¼ 1
v
Ỹ Ṽ �1Ỹ

T
is the sample covariance matrix of the data

over time bins, trials or conditions being analyzed. See Friston et
al. (2007) for a detailed discussion of this objective function and its
role in expectation maximization and variational Bayes.

The M-step: hyperparameter estimation

The hyperparameters are optimized by entering the sample
covariance matrix C into the following M-step and iterating, until
convergence

Fki ¼ � v
2
tr Pi C� R Ak

� �� �� ��Pii Aki � gi
� �

Fkkij ¼ � v
2
tr PiR Ak

� �
PjR Ak

� �� ��Pij

DAk ¼ �F�1
kk Fk

Rk ¼ �F�1
kk ð6Þ

This is simply a Fisher-scoring scheme that optimizes the free
energy with respect to the hyperparameters. Fλ and Fλλ are the
gradient and expected curvature of the free energy.5 Notice that we
only have to update the conditional expectation of the hyperpara-
meters because their conditional covariance is simply the curvature
of the free energy; this follows from the Laplace assumption. Here
the matrix Pi=−exp(λi)Σ

−1QiΣ
−1 is the derivative of the data

precision, Σ(μλ)− 1 with respect to the i-th hyperparameter,
evaluated at the conditional expectations (see Eq. (4)). See Friston
et al. (2007) for derivations of Eq. (6) and associated variables.
When there are large numbers of covariance components, with
small rank, it is computationally more efficient to compute these
derivatives using a singular value decomposition of the compo-
nents; see Appendix A for details. This is particularly useful when
components have the form; Qi

ε=qiqi
T.

This optimization scheme is very simple and reasonably
efficient because it uses the expected curvature of the objective
function. Wipf et al. (2006) present some alternative schemes,
under additional assumptions, but consider only Gaussian process
priors that are linear in the hyperparameters. By using the nonlinear
hyperparameterization Σ(λ)=exp(λ1)Q1+… in Eq. (4), we can
5 Here, and in Appendix A, we denote differentiation using a subscript
notation, such that Fλ≡∂λF≡∂F /∂λ.
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ensure positive semi-definite covariances, while exploiting the
ReML scheme for optimization. It is this nonlinear hyperparame-
terization that underlies ARD behavior (see below).

Technically speaking, optimizing the log-evidence bound with
ReML is a much simpler alternative to standard variational
schemes, which entail the use of (improper) conjugate hyperpriors.
It allows one to use any hyperprior and formulate an efficient
ascent, using gradients and curvatures in the normal way. The
reason that the M-step does not need quantities from the E-step is
that any dependence on the parameters has been eliminated by
collapsing the hierarchical model down to the data level. This is a
key advantage of ReML and renders it formally the same as
Gaussian process modeling, which uses a density on the space of
functions causing the data. In our case, the data are a mixture of
covariance components, which are a nonlinear function of the
hyperparameters (and only the hyperparameters).

E-step: parameter estimation

After the M-step has converged the hyperparameter estimates
are used to reconstitute the source covariance in Eq. (1) to compute
the conditional density q(θ̃ )=N(μ̃θ,Σ̃θ) of the sources using the
matrix inversion lemma:

M ¼ ReðAkÞLTRðAkÞ�1

Ãh ¼ MỸ

R̃
h ¼ Re �ML̃Re ð7Þ

Notice that, at no point in the M- or E-step, do we have to
invert matrices larger than n×n, where n is the number of channels.
A key aspect of this scheme is that the maximum a posteriori or
MAP estimator matrix M=ΣεLTΣ−1 needs only to be computed
once for any trial or collection of trials (depending on the data one
wants to optimize the estimates over). This estimator can then be
applied to any mixture of responses over time bins, trials or
conditions to obtain the conditional expectation of that mixture or
contrast. For example, the conditional expectation of a contrast of
responses in source space that is specified by a time–frequency
contrast6 matrix W∈Rs×u, over time bins, is

EfhWg ¼ M̃Y W̃

W̃ ¼ SSTW

M̃ ¼ UMUT ð8Þ

These contrasts generally test for specific time–frequency
components by defining a temporal subspace of interest (e.g.,
gamma oscillations between 300 and 400 ms after stimulus onset).
This contrast has conditional covariance, W̃TVW̃⊗UΣ̃θUT. The
contrast matrix can be a simple vector; for example a Gaussian
window W∈Rs×1 over a short period of peristimulus time or cover
specified frequency ranges (with one frequency per column) over
6 A contrast matrix refers to a set of weights that are applied to parameters
to form a mixture or compound (if this compound is estimable, it is referred
to as a contrast in classical statistics).
extended periods of peristimulus time (Kiebel and Friston, 2004).
The conditional expectation of the energy in a contrast is

EðhWWThT Þ ¼ M̃Y W̃W̃
T
YTM̃

T þ RhtrðW̃ T
V W̃ Þ ð9Þ

See Friston et al. (2006) for details. Both the conditional esti-
mates of contrasts and their energy can then be used as summaries of
condition-specific responses for each subject and entered into
statistical models of between subject responses in the usual way.
Conditional contrasts

Although we will focus on reconstructing event-related
potentials (ERP) averaged over a single trial-type in this paper,
contrasts can cover both peristimulus time and conditions. This
extension induces a factorization of the contrast matrix W̃→c⊗W̃
into a peristimulus time factor, W̃ over time bins and a contrast
vector over trial-types or conditions; e.g., c=[1; −1] would test for
a larger response in the first condition. In this instance the
conditional expectation of the contrast is M̃[Y1,…,YN](c⊗W̃) for N
condition-specific event-related potentials in Y=[Y1,…,YN].

This factorization of the contrast matrix into within and
between-trial effects can be particularly useful for estimating
energy over individual trials of the same type (cf. induced
responses7). In this instance, W̃→ I⊗W̃ and the induced response
is

M̃Y ðI �W̃ W̃ ÞTYTM̃
T þ RhtrðI � W̃

T
V W̃ Þ

¼
X
i

M̃YiW̃W̃
T
YT
i M̃

T þ NRhtrðW̃ T
VW̃ Þ ð10Þ

This is simply the sum of squared conditional estimates from
each trial plus a term that depends on the conditional covariance.
This term corrects for bias due to the implicit shrinkage priors we
have used (see Friston et al., 2006 for more details). In this paper,
we will not consider contrasts over trials or conditions further
because our focus is on comparing the models that underlie the
estimators. Furthermore, most inference in ERP research is at the
between-subject level and only requires a summary of each
subject's condition-specific response. This summary is usually the
conditional estimates considered here.

Model comparison and the log-evidence

To compare different models (defined by different priors) we
need their log-evidence or marginal likelihood (see also Serina-
gaoglu et al., 2005). The log-evidence is bounded by the free
energy optimized in the M-step, such that when the free energy is
maximized, so is the model evidence and we have the approximate
equality ln p(Ỹ |m)≈F. This rests on the Laplace approximation for
both the parameters and hyperparameters and is derived from basic
principles in Friston et al. (2007).

It is interesting to consider the behavior of the last two
(complexity) terms of the free energy in Eq. (5); when a covariance
component is not necessary to explain data its hyperparameter
approaches its prior expectation; μλ→η. In this instance, the
7 In this paper, we make no distinction between the total energy induced
by a stimulus or event and the energy remaining after the evoked (i.e.,
average) response has been removed.



Fig. 1. Schematic showing the architecture of the inversion scheme. This comprises a model reduction, by projection onto a spatiotemporal subspace, followed by
variational inversion of the ensuing hierarchical or parametric empirical Bayes model. In this instance, the variational scheme, under a Laplace assumption,
reduces to expectation maximization. The products of this scheme, which rests on iteration of the M-step, are the conditional density of the model parameters
(and hyperparameters) and a variational bound on the model's log-evidence or marginal likelihood. Note the central role of theM-step in furnishing the sufficient
statistics necessary for evaluating the free energy bound and the conditional expectations of the parameters or sources and of any contrasts.
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conditional precision approaches its upper bound, Σλ− 1

→Π, which
is the prior precision and both the complexity terms approach zero.
In other words, provided one uses a non-informative hyperprior
with a very low prior expectation, redundant covariance compo-
nents will be switched off and will not affect the free energy bound.
This is because they do not increase accuracy or complexity. In our
work,8 we use η=−32 and Π=1/256.

A relatively flat Gaussian hyperprior effectively places a Jeffreys
prior on the scale parameters, exp(μλ) of the covariance compo-
nents; this hyperprior is always a proper density, which may be
useful in a sampling context. However, the Gaussian is not
completely flat and enables us to preclude unreasonably large scale
parameters; for example, for a scale parameter of one, the
hyperparameter must be two prior standard deviations; 32 ¼
2

ffiffiffiffiffiffiffiffi
256

p
from its prior mean. Strictly speaking, this is a weakly

informative hyperprior, as characterized by Gelman (2006); i.e., a
weakly informative proper distribution “that is set up so that the
information it does provide is intentionally weaker than whatever
actual prior knowledge is available”.
8 To ensure this prior is only weakly informative, we scale the sample
covariance and its components so that their trace is one.
To compare two or more models we simply look at the diffe-
rence in log-evidence; this is the log of the Bayes factor
comparing two models (Kass and Raftery, 1995). By convention,
a difference in log-evidence of about three or more is taken as
strong evidence in favor of the model with the greater likelihood.
We will demonstrate this approach to model comparison in the
final section to look at different models and to optimize a model
within a given class. This concludes the specification of the for-
ward model and its inversion. See Fig. 1 for a schematic summary
and the central role of the M-step (augmented ReML). In the next
section, we look at some specific examples, with a special focus on
model comparison.

Simulations

In this section, we use simulations to evaluate the performance
of various models. We will look at model evidence, variance ex-
plained and pragmatic measures of spatial and temporal accuracy.
We describe how the data were simulated and the models con-
sidered and then report comparative analyses. First, we consider the
generative models used to simulate data. These models comprise
the conventional forward model encoded in the lead-field matrix
and the priors on the sources.



Fig. 2. Meshes and locations used to define the forward model. The three
concentric meshes correspond to the scalp, the skull and cortex; the cortex
mesh comprises 4004 vertices, which constitute source space. The green
dots indicate the position of the 128 channels. Channel locations were
registered to the meshes using fiducials in both spaces (cyan cortex and
magenta diamonds) and the subject's head shape, as digitized with a
Polhemus Isotrak (red dots). This display format is the standard SPM output.

Fig. 3. Schematic illustrating the three models we focus on in this paper.
These include an MNM model with a single covariance component
encoding identically and independently distributed sources, a model
accommodating spatial dependencies through an additional component
modeling spatial coherence. This component is a Greens function based on
the adjacency matrix of a cortical mesh modeling source space; finally we
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The forward model

The forward models in this paper use a high-density canonical
cortical mesh. These meshes were obtained by warping a template
mesh to match the structural anatomy of an individual subject as
described in Mattout et al. (2007). The template mesh of a
neurotypical male was extracted from a structural MRI, using
BrainVISA and Anatomist.9 This furnished a high-density mesh
with a uniform and discrete coverage of the gray–white matter
interface. After down-sampling to various sizes, this mesh
corresponds to the templates currently available in the latest
release of the SPM software package (see Software note). Here, we
use a mesh down-sampled to 4004 vertices. For any given mesh,
each vertex location corresponds to a dipole position, whose
orientation is fixed perpendicular to the surface.

The lead-field or gain matrix was computed for the canonical
mesh and coregistered channel locations using a three-sphere head
model for EEG using routines from BrainStorm (http://neuroimage.
usc.edu/brainstorm/). The coregistration and forward model was
computed within SPM5 (http://www.fil.ion.ucl.ac.uk/spm). This
provided the gain matrix; L⊗R128 ×4004 coupling 4004 cortical
sources to 128 EEG channels, where each source has a unique
location in the standard anatomical space of Talairach and Tournoux
(1988). See Fig. 2 for the spatial configuration of sources and
sensors used for the simulations. In fact, this configuration is from
the single subject, whose data are analyzed in the next section.

Three spatiotemporal prior models

Fig. 3 shows the three prior models for the deployment of
activity over cortical sources considered in this paper. For all three
9 Cointepas et al. (2001) and http://brainvisa.info/doc/brainvisa/en/
processes/aboutBrainVISA.html.
models, temporal priors were fixed by assuming Gaussian
autocorrelations; V(τ):τ=4 among channel noise with a standard
deviation of four milliseconds; i.e.,

V ðsÞ ¼ KðsÞKðsÞT

KðsÞij ¼ expð� 1
2
ði� jÞ2s�2Þ ð11Þ

This is roughly the autocorrelation of white noise that has been
filtered with the band-pass filter we used in pre-processing. The
models differed in terms of their empirical spatial priors. These
models included a conventional minimum norm model (MNM)
where Qε= I. As mentioned above, this model asserts that all
sources are active, with equal a priori probability and that none are
correlated. We then consider a more realistic model (COH) with
two components modeling independent and coherent sources
respectively; Qε={I,G} (cf. Pascual-Marqui, 2002), where

G rð Þ ¼ exp rAð Þc
X8
i¼0

ri

i!
Ai ð12Þ

is a spatial coherence prior, which is a Green function of an
adjacency matrix A. This matrix encodes the neighborhood
relationships, Aij∈ [0,1], between nodes of the cortical mesh
defining the solution space; see LeSage and Pace (2000) and
Harrison et al. (2007) for more details on this Gaussian process
prior. The Taylor approximation above ensures that only eighth-
order neighbors (i.e., nodes connected by eight or less edges)
have non-zero values. This enforces priors with compact and
sparse support on the cortical mesh nodes. The smoothness para-
meter, σ, can be thought of as an autoregression coefficient and
varies between zero and one. In this paper, we used a spatial
coherence prior, G(σ):σ=0.6, which propagates spatial depen-
dences over three or four mesh vertices that are, on average,
about 6 mm apart.
consider multiple sparse priors by modeling multiple source components as
patterns with compact support. In fact, these are sparsely sampled columns
of the Green function matrix.

http://neuroimage.usc.edu/brainstorm/
http://neuroimage.usc.edu/brainstorm/
http://www.fil.ion.ucl.ac.uk/spm
http:////brainvisa.info/doc/brainvisa/en/processes/aboutBrainVISA.html
http:////brainvisa.info/doc/brainvisa/en/processes/aboutBrainVISA.html
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Finally, we consider a multiple sparse prior (MSP) model with
components Qε={q1q1

T,…,qNqN
T} modeling activity in N patterns,

q1,…,qN. These source components were formed by sampling from
evenly spaced columns of the coherence matrix above. This ensured
that each source component had compact support and was locally
coherent. Note that there are many fewer patterns than dipoles. One
can imagine these components as being formed by selecting a dipole
and propagating a proportion (i.e., σ) of its activity to connected
dipoles and then repeating this eight times. We sampled components
from homologous (nearest neighbor) nodes in each hemisphere to
give right, qi

right and left, qi
left hemispheric components. We then

added the homologues to give a bilateral component; qi
both =

qi
right +qi

left, modeling correlated sources in each hemisphere. All
three components entered the model. Unless otherwise stated, we
use 128 components per hemisphere. This number is based on the
model optimization procedure described in the next section. Note
that these components are not proper (i.e., they have a rank of only
one); however, this is not an issue, provided we restrict ourselves to
inference using the marginal posteriors at each dipole.

Note that if bilateral sources are truly correlated the unilateral
components are redundant and will not be selected; conversely, in
Fig. 4. Schematic illustrating the construction of synthetic data. The upper panels
space, which was obtained by projecting the signal in source space through the lead-
over dipoles on the cortical mesh (left panel). The dynamics of these sources confo
singular value decomposition of real channel data (the color of the time course encod
right) is added to the synthetic signal (lower middle) to provide simulated data. Fo
Data are shown for 100 ms before stimulus onset to 400 ms after.
the absence of correlations, the bilateral component will be irrele-
vant. The motivation for using this particular set of components is
based on prior knowledge about extrinsic cortico-cortical connec-
tions in the brain that mediate long-range synchrony and coherence;
these can be loosely classified as intra-hemispheric ‘U’ fibers and
inter-hemispheric trans-callosal connections coupling homologous
regions (Salin and Bullier, 1995). These two sources of correlation
are reflected in the local coherence modeled in all components and
the possibility for inter-hemispheric correlations that are accom-
modated by the bilateral source components. Clearly, there are
many other priors on functional anatomy that we could explore;
however, the current MSP model is sufficiently different from the
conventional and smoothness-constraint models to make a
comparative evaluation interesting.

Synthetic data

We took care to simulate realistic data using as many empirical
constraints as possible. Our strategy was to use empirical data to
define temporal dynamics of evoked responses (and the level of
noise) and assign these dynamics to distributed but contiguous
pertain to the signal; the middle panel shows the synthetic signal in channel
field matrix. Source activity is composed of five compact sources distributed
rm to principal eigenvariates of real data (right panel) computed following a
es the corresponding spatial support in the left panel). Gaussian noise (lower
r comparison, real data (used in the third section) is also shown (lower left).
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nodes on a cortical mesh. Using the real EEG data described in the
next section, we performed a singular value decomposition in
channel space to identify its principal time courses over 821
(∼1 ms) time bins, starting 200 ms before the presentation of a
stimulus. We retained the first five singular vectors, Tθ∈R5× 821

and deployed these over five distributed sources. These sources,
qθ∈R4004 ×5 were columns of a smooth spatial coherence prior; G
(σ):σ=0.8. Critically, these columns were selected at random and
were not the same components used by the MSP model, which
used different columns of the spatial coherence prior and a
different value of spatial coherence, 0.8 vs. 0.6. By construction
the time courses of the five sources were orthogonal; however, no
Fig. 5. True (left) and estimated (right) responses for one realization. The upper pan
dipoles and time bins. The conditional estimate of this response is shown on the righ
lower panels show the spatial deployment of activity for the time bin with the bigge
conditional reconstructions are shown in maximum intensity projection format and h
which are estimated with 95% confidence to be greater than zero (estimated response
time course of the dipole with the true and estimated maximum responses (indicated
Data are shown for 100 ms before stimulus onset to 400 ms after.
special measures were taken to prevent them overlapping in space
or time.

The ensuing source activity was projected through the lead-
fields to simulate signals in channel space, LqθTθ. Serially corre-
lated noise ς∈R128 × 821 was created by sampling from a Gaussian
distribution and smoothing with a Gaussian convolution matrix,
KðsÞ: τ ¼ ffiffiffiffiffiffiffiffi

128
p

, which modeled serial correlations with a correla-
tion length of about 10 ms. The noise was scaled to a tenth of the L1-
norm of the simulated signal; this provided a signal to noise ratio of
about ten, in terms of relative power or variance. The signal and
noise were mixed to provide simulated data. An example from this
procedure is shown in Fig. 4 for 512 time bins.
els show the time course from the dipole with the maximum activity over all
t, along with its 95% confidence intervals. The agreement is self-evident. The
st absolute response (inducted by the broken lines in the upper panels). These
ighlight the 64 dipoles with the largest activity (true response; left) and those
; right); this constitutes a posterior probability map or PPM. The location and
with arrows) are used to measure spatial and temporal accuracy respectively.



Fig. 6. Top: frequency distribution of signal to noise over the 256 simu-
lations. Lower: the percent variance explained by the conditional estimates
for the three models: the bars encode the mean over simulations and
the broken lines show the variance explained by the models for each
realization.
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Simulations and accuracy measures

We employed four comparative metrics: the log of the marginal
likelihood or model evidence as approximated with free energy in
Eq. (5); the percent variance explained over all channels and time
bins by the conditional estimates (cf. coefficient of determination);
spatial accuracy was assessed with the Euclidean distance in
millimeters between the most active [unsigned] dipole over time
bins and the dipole with the largest [unsigned] conditional ex-
pectation at the same time. Temporal accuracywas assessed with the
squared correlation (i.e., the coefficient of determination) between
the true time course of the most active dipole and the conditional
estimate from the dipole used to assess spatial accuracy. It should be
noted that this is a rather severe test of localization performance
because it requires the inversion to find the correct (i.e., largest)
among five distributed but compact sources. Furthermore, the
temporal accuracy can be subverted, if the wrong dipole has been
identified due to spatial inaccuracies. The Euclidean distance is a
rather unsophisticated measure (a Geodesic metric would be more
principled in a single-subject setting); however, this assessment of
localization error is commonplace and is more relevant to inference
at the between-subject level in three-dimensional anatomical space
(see Henson et al., 2007 for a fuller discussion).

Fig. 5 shows an example of one simulation and the conditional
expectations following its inversion. The upper panels show the
time courses for the dipoles used to assess spatial and temporal
accuracy. The lower panels show the responses over dipoles using
a maximum intensity projection. This uses the same format
commonly employed by SPM for other imaging modalities and
provides orthogonal, glass brain views of responses or regional
effects in the standard anatomical space of Talairach and Tournoux
(1988). This is possible because each vertex in the canonical mesh
has a direct mapping to standard space. In the figure we have called
this a PPM or posterior probability map. This is because we can
compute the posterior probability that dipole activity is greater than
zero and determine the lower bound on the probability, over
dipoles or voxels, at the time-point displayed.

Simulation results

We generated 256 synthetic data sets and inverted the three
models above for each realization using V(τ):τ=4. Fig. 6 (upper
panel) shows the distribution of the signal to noise ratio over the
simulations; these levels are fairly typical of ERP data that we
acquire, with an SNR of about ten (min, 8.2; max, 19.2; mean, 12.1).
As might be expected, under these levels of noise the percent of
variance explained is about 90%, as shown in the lower panel. Note
that, without constraints, one could easily account for all the
variance because we are dealing with an over-determined problem.
The reason that some variance is unexplained is that the empirical
priors are enforcing constraints on the solution. If these empirical
priors have been optimized properly, one would like to see about
92.37%=12.1 / (1+12.1) of the variance explained because this is
the proportion that is true signal. Happily, the MSP model explained
almost exactly this proportion (92.30%). The simpler COH and
MNM models explained substantially less (50.46% and 52.15%
respectively) and showed a greater variability over realizations; see
Fig. 6 (lower panel). This is because they are poorer models of the
data.

This was confirmed by examining the evidence of the three
models over simulations. Fig. 7 (upper panel) shows that the
likelihood of the MSP model is vastly greater than the other two
models, although there is strong evidence for COH over MNM.
This formal model assessment reflects both accuracy and complex-
ity. However, if we focus on simple measures of accuracy, the MSP
model still supervenes. This has to be the case because the MSP is
more complex and must pay the price for its extra parameters with
an improved fit. The lower panels of Fig. 7 show the average
temporal and spatial accuracy measures and the dispersion over
realizations for the three models. The same data are plotted in terms
of cumulative frequency in Fig. 8 to disclose the quantitative
differences more clearly. In terms of spatial accuracy, the main
difference appears in the more pronounced mislocalizations;
quantitatively, 81.6% of all MSP models located the maximum
source within 40 mm of the true maximum. In contrast, only 69.9%
of the COH models and 64.4% of the MNM models were able to
attain this spatial accuracy. This represents a two-fold increase in
false localizations for the simpler models over MSP, which is
remarkable. In relation to some simulations, these localization



Fig. 7. Top: model comparison in terms of log-evidence or marginal likelihood for the three models under each of the 256 realizations of simulated data. The bars
encode the mean log-evidence and the broken lines link the model evidence for each realization (these also indicate any multimodal distribution about the
means). Lower panels: accuracy measures for the three models using the same format. Temporal accuracy (left) is measured in terms of the squared correlation or
coefficient of determination for the true time course at the true maximum and the time course estimated at the estimated maximum (see Fig. 5). Spatial accuracy
(right) is expressed as the Euclidean distance between the true and estimated maximum of source activity in millimeters.
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errors may appear to be large; however, recall that we are using
multiple distributed sources, where each source is itself dispersed
over the cortical sheet. Furthermore, a proportion of realizations had
Fig. 8. Representation of spatial and temporal accuracy for the MSP (solid line), CO
cumulative frequency of realizations where the localization error fell below an upp
coefficient of determination fell below an upper bound (x-axis). The dotted line
determination of one half (temporal).
fairly low signal to noise levels. Adding dipoles and noise to
simulations characteristically compromises localization perfor-
mance (see Mosher et al., 1993; Russell et al., 1998). The key
H (dashed line) and MNM (dotted line) models over 256 simulations. Left:
er bound (x-axis). Right: cumulative frequency over realizations, where the
s represent threshold on accuracy of 32 mm (spatial) and a coefficient of



Fig. 9. Detailed analysis of localization error in terms of the depth of the true location of the maximum dipole. This depth is expressed as the distance in
millimeters from the origin of standard space. The results on the left (for the MSP model) show that there is a slight depth effect in the sense that the localization
errors for deep and superficial sources are roughly the same. In contrast, the MNMmodel failed to locate deep sources (right panel). The dotted line corresponds
to a partitioning of deep and superficial sources at 50 mm and a localization error of 32 mm.

10 Artifacts were defined as epochs in which a time bin exceeded an
absolute threshold of 120 μV.
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metric here is not absolute error but the improvement afforded
by a more accommodating model.

Similarly, in terms of temporal accuracy, 13.6% of all MSP
models failed to reach a coefficient of determination of one half
(i.e., half the estimated variance over time could be regarded as
veridical; equivalently, the correlation was less than 0:7 ¼ ffiffiffiffiffiffiffiffi

1=2
p

).
This contrasts with 27.3% and 33.9% of COH and MNM models
respectively that failed to reach this temporal accuracy. Again this
is a two-fold increase in reconstruction failure. Interestingly, the
COH model performed much better than the classical MNM model
on temporal accuracy, despite the fact that they differ only in their
spatial priors.

To emphasize the superiority of the MSP solutions, we
examined them for a common failing of simple models, namely
a bias toward superficial sources (Fuchs et al., 1999). Fig. 9 shows
the localization error as a function of the distance between the true
maximum and the origin of standard anatomical space (i.e., close to
the center of the spherical head model). The difference between the
MSP solution (left panel) and the simpler MNM solution is
obvious; ‘deep’ dipoles that are close to the origin are more than
likely to be misplaced by the MNM model. For example, 81.6% of
deep sources (less than 50 mm from the origin) were misplaced by
at least 32 mm; this compares to only 28.9% for superficial sources
(more than 50 mm from the origin). This bias is reduced
substantially in the MSP solutions, with 44.8% and 20.2% of
solutions misplaced by 32 mm or more, for deep and superficial
sources respectively.

On all the metrics considered, the MSP model outperformed
optimized conventional models. This is not too surprising because
the data were generated in a way that the MSP model could
reproduce. This does not mean that the comparative analysis is
specious; it reflects that fact that the MSP model is the most
general among the three models; if we had generated data using the
COH priors, the MSP would select its components to emulate the
performance of the COH model. Note that simulating data with
uncorrelated sources of equal amplitude, at every dipole, would not
generate very plausible data. In other words, COH priors are not, in
all senses, plausible priors but they are certainly much better than
MNM priors. We now turn to explorations of model space using
real data.
Analyses of real data

In this section, we use real data to provide some provisional
validation of the MSP model through model comparison. We start
by optimizing the number of MSPs, in the context of real data, and
then compare the three models from the previous section, using an
optimum MSP model. We conclude with anecdotal evaluations in
relation to ECD and fMRI analyses, of the same experimental
effects, which try to establish some construct and face validity.

The EEG data

The EEG data were acquired from a subject who participated in
a multimodal study on face perception (for detailed description of
the paradigm see Henson et al., 2003 and http://www.fil.ion.ucl.ac.
uk/spm, where these data can be downloaded). The subject made
symmetry judgments on faces and scrambled faces. Faces were
presented for 600 ms, every 3600 ms while data were acquired on a
128-channel ActiveTwo system, sampled at 2048 Hz, plus
electrodes on left earlobe, right earlobe, to measure eye movement.
After artifact rejection,10 the epochs (80 face trials, collapsing
across familiar and unfamiliar faces) were baseline-corrected from
−100 ms to 0 ms, averaged and down-sampled to 1024 Hz. The
subject's T1-weighted MRI was obtained at a resolution of 1 mm3

and was used to map a canonical template mesh from standard
anatomical space into the individual's space. The subject's head
shape was digitized with a Polhemus Isotrak, which was used to
coregister the channel locations and cortical mesh using a rigid-
body (six-parameter) affine transformation (see Fig. 2).

Optimizing the number of sparse priors

In the previous section, we used 128 patterns or source com-
ponents per hemisphere (i.e., 384 prior components). This number
was chosen on the basis of a model comparison using the real data
considered next: Because our Bayesian inversion furnishes the
model evidence and the model can be defined in terms of the

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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number or form of its components, we can use the free energy
bound on the log-evidence to search model space and optimize any
model within a specified family. In this case, we can explore the
number of MSPs and optimize the model complexity using any
empirical data. Fig. 10 shows the results of this analysis for the
current data, plotting the log-evidence as a function of the number
of components for each hemisphere. It can be seen that the model
evidence exhibits a sigmoid behavior jumping sharply after eight
and then increasing more slowly (note the logarithmic scaling over
the number of components). This suggests that models with fewer
components are compromised, in terms of being able to explain
observed data, by insufficient degrees of spatial freedom. Increasing
the number of MSPs further led to an actual reduction in the free
energy. In principle, this should not happen but, in practice, the EM
scheme can converge on local minima, or more precisely, a more
complex model with additional hyperparameters may increase the
chance of local minimum problems.

The lower panels of Fig. 10 show the [unsigned] source activity
as a maximum intensity projection. These images show the 512
dipoles with the greatest activity at 170 ms and can be regarded as
X-rays of activity. In all cases there are bilateral extrastriate and
medial and lateral temporal responses with a more unilateral (right-
Fig. 10. Exploring model space in terms of the number of multiple sparse priors. Up
number of MSPs (x-axis). These are expressed as the number of source components
activity at 170 ms for exemplar models (with 8, 32 and 128 MSPs per hemisphere
sided) frontal component. As the model evidence increases the
medial sources migrate laterally and posteriorly into the ventral
fusiform gyrus. Qualitatively, there is a marked change in source
reconstruction (lower panels) as number of components goes from
8 to 32 but a smaller difference from 32 to 128. It takes about 10 s
to fit an MSP model with 128 components per hemisphere and we
consider this number a useful compromise between the quality of
the model and computational cost. In the remainder of this paper,
all the MSP modes employ 128 source components per hemisphere
(i.e., 384=3×128 components in all).

We performed similar analysis for the coherence parameter of
the Green function. These analyses showed much less dependence
on coherence, provided that it was in the range; 0.2≤ s≤0.8. The
maximum was usually around 0.6, but changed with the number of
MSPs and clearly the number of mesh vertices (which determines
the vertex spacing) (results not shown).

Model comparison

Having optimized the MSP model, we then compared the three
models of the previous section using the ERPs evoked by faces. The
results of this analysis are shown in Fig. 11, using the same format as
per panel: the free energy bound or log-evidence for models with increasing
per hemisphere. Lower panels: maximum intensity projections of the spatial
).



Fig. 11. Model comparison between MSP, COH and MNM models using the empirical ERPs evoked by faces. This uses the same format as the previous figure
and shows that the MSP model supervenes. The spatial structure in the maximum intensity projections (lower panels) reflects the complexity of the models
employed.
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Fig. 10. It is evident that, both in terms of model evidence and
accuracy (explained variance) the MSP model is substantially better
than the other models. It is also interesting to note that the spatially
coherent model is better than the classical minimum norm, although
this difference is much smaller. The maximum intensity projections
or glass brains show nicely the effect of increasing the constraints on
the model as one goes from multiple sparse priors to a single
minimum norm prior; as expected the profile of activity becomes
simpler and less informative. Specifically, the reconstructed profiles
become more superficial and dispersed.

Face validity

The results of theMSP inversion are largely consistent with what
we would expect from an ERP elicited by face stimuli. This is
illustrated in Fig. 12. In the top middle panel, we show the
conditional estimate of the time course over peristimulus time for the
maximally responsive dipole in the left fusiform region (at −23,
−54, 0 mm). There is a pronounced N170, with reasonably tight
conditional confidence intervals. The bilateral maxima at this time
bin, in the glass brain, agree very well with the locations of two
equivalent current dipoles fitted to the same data (left panels);
however, the conventional ECD solution was obtained by averaging
the ERP over 150 to 200 ms, during which time the MSP recon-
struction changes. There is an equally good correspondence with the
profile of activation measured in a group of eighteen subjects using
fMRI (see Henson et al., 2007). In both the single-subject MSP
reconstruction and the fMRI results, there are three bilateral pairs of
ventral occipito-temporal responses in conjunction with a ventral
prefrontal source, with right hemisphere emphasis.

Finally, we show in Fig. 13 the correspondence between
observed response and conditional expectation in channel space.
Although we can only show a single time slice here (the response
at 170 ms); the equivalent movies of the evoked dynamics in
channel space and their prediction show a pleasing similarity. More
importantly, the reconstructed time courses in channel space
illustrate a ubiquitous feature of empirical shrinkage priors of the
sort we have used here, namely the shrinkage of conditional
estimates to their prior expectation of zero. The shrinkage accounts
for the fact that only about 90% of the observed variance is
explained by optimum models. The remaining variance is, one
hopes, largely noise.

Conclusion

This paper has described a new application of hierarchical or
empirical Bayes to the distributed source reconstruction problem
in EEG and MEG. The key contribution is the automatic
selection of multiple cortical sources with compact spatial support
that are specified in terms of empirical priors. This obviates the
need to use priors with a specific form (e.g., smoothness or
minimum norm) or with spatial structure (e.g., priors based on



Fig. 12. Comparative results for the N170 as reconstructed using the MSP model (middle panels) and a two-ECD solution (obtained with SPM5 using exactly
same data) based on the same three-sphere head model (left panels). The cortical renderings (right panels) show voxels that survived an uncorrected threshold of
pb0.001, when testing for face-selective responses in a group of eighteen normal subjects using fMRI. The lower inset is of the conditional [unsigned] activity at
187 ms, rendered on the canonical cortical mesh used to model source space (the mesh has been made slightly transparent so that deep sources can be seen easily).
Equivalent results are shown in maximum intensity projection format in three-dimensional space (lower panel). This spatial profile is expressed at the same time
of the maximum [unsigned] response over all voxels and time bins, at 161 ms. These display formats are the standard SPM output.

1118 K. Friston et al. / NeuroImage 39 (2008) 1104–1120
depth constraints or functional magnetic resonance imaging
results). Furthermore, the inversion scheme allows for a sparse
solution, of the sort enforced by equivalent current dipole models,
for distributed sources. This means that the approach automati-
cally selects either a sparse or a distributed model, depending on
the data.

There are a number of aspects of the scheme we have not
demonstrated in this paper, specifically the derivation of conditional
contrasts over time–frequency windows and their corresponding
conditional energy (cf. induced responses). In a practical setting, we
envisage that the source reconstruction described above would be
used to summarize the responses of each subject to each ex-
perimental trial or condition. In our [academic freeware] imple-
mentation, these contrasts are projected from a two-dimensional
cortical manifold to a full three-dimensional anatomical space. This
enables the conditional estimate to be smoothed and entered into
standard SPM analyses for inference at the between-subject level.
We deliberately smooth in three-space to ensure that variations in
gyral anatomy from subject to subject (which are not confined to a
two-dimensional manifold) are accommodated by smoothing, in
accord with the matched filter theorem (see Henson et al., 2007 for
a fuller discussion).
Further constraints on the solutions under MSP can be enforced
by specifying volumes of interest, within which to reconstruct
current source density. This effectively forces solutions to occupy
volumes of interest and can be a useful device when the regions
involved are known in advance. These and other model selection
issues will be the subject of future papers that use the techniques
described in this paper.

Software note

The inversion scheme and models considered in this paper are
implemented in the SPM academic software, which is available
freely from http://www.fil.ion.ucl.ac.uk/spm. The MSP and other
models are an integral part of the source reconstruction stream,
which allows one to create conditional contrasts and their energy
for any number of trials or types. The display format used by SPM
adopts the same format used in Figs. 2, 12 and 13.
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Fig. 13. Observed and predicted responses in channel space. Upper panels:
interpolated pseudo-map of activity at 170 ms for true (left) and predicted
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Appendix A

This appendix describes an efficient way to compute the gra-
dients and curvatures of the free energy bound on the log-evidence
that is optimized in the M-step of the variational scheme described
in the main text (see Fig. 1). For clarity, we denote differentiation
using a subscript notation, such that Fλ≡∂λF≡∂F /∂λ, where λ is a
variable (as opposed to an index). An efficient formulation of the
M-step rests on the equalities

Fki ¼ Lki �PiiðAki � giÞ

Fkikj ¼ Lkikj �Pij

Lk ¼ Lggk

Lkk ¼ gTkLgggk ðA1Þ

where Lγ and Lγγ are the gradients and curvatures of L=lnp(Ỹ |γ,m)
with respect to γ=[γ1

(1),γ1
(2),…γ2

(1),γ2
(3),…], which are the condi-

tional eigenvalues of each component

expðkiÞQi ¼
X
j

g
ðjÞ
i qðjÞi qðjÞTi Z
g
ðjÞ
i ¼ expðkiÞqðjÞTi Qiq

ðjÞ
i

qðjÞTi qðkÞi ¼ 1 j ¼ k
0 j p k

�
ðA2Þ

Here, γi
(j) and qi

(j) are the j-th eigenvalue and eigenvector of
exp(λi)Qi. The advantage of this formulation is that the gradients
and curvatures are very simple to evaluate11

Lg ¼ v
2
diag qTR�1 C � Rð ÞR�1q

� �

Lgg ¼ � v
2

qTR�1q
� �� ðqTR�1qÞT ðA3Þ

where q=[q1
(1),q1

(2),…q2
(1),q2

(3),…] are also the eigenvectors of Qi.
The form of Eq. (A.3) capitalizes on the fact that we are
differentiating with respect to the scale parameters of single
eigenvectors, where, tr(Aqi

(j)qi
(j)T)=qi

(j)TAqi
(j). This means that one

can avoid invoking the trace operator for each element of the
gradient vector and curvature matrix. The derivatives of the
eigenvalues, with respect to the hyperparameters, γλ exist only
where they pertain to the same component.

∂gðjÞi
∂kk

¼ expðkkÞqðjÞTi Qiq
ðjÞ
i k ¼ i

0 k p i

�
ðA4Þ

In practice, the explicit eigen-solution is seldom necessary
because components are generally specified as either Q= IZ q= I or
have the form, Qi=qiqi

TZ qi
(1) =qi, where there is only one

eigenvalue and qi
Tqi=1.
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