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Abstract: We describe an extension of our empirical Bayes approach to magnetoencephalography/
electroencephalography (MEG/EEG) source reconstruction that covers both evoked and induced re-
sponses. The estimation scheme is based on classical covariance component estimation using restricted
maximum likelihood (ReML). We have focused previously on the estimation of spatial covariance
components under simple assumptions about the temporal correlations. Here we extend the scheme,
using temporal basis functions to place constraints on the temporal form of the responses. We show how
the same scheme can estimate evoked responses that are phase-locked to the stimulus and induced
responses that are not. For a single trial the model is exactly the same. In the context of multiple trials,
however, the inherent distinction between evoked and induced responses calls for different treatments of
the underlying hierarchical multitrial model. We derive the respective models and show how they can be
estimated efficiently using ReML. This enables the Bayesian estimation of evoked and induced changes in

power or, more generally, the energy of wavelet coefficients. Hum Brain Mapp 27:722-735, 2006.
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INTRODUCTION

Many approaches to the inverse problem acknowledge
non-uniqueness or uncertainty about any particular solu-
tion; a nice example of this is multistart spatiotemporal
localization [Huang et al., 1998]. Bayesian approaches ac-
commodate this uncertainty by providing a conditional den-
sity on an ensemble of possible solutions. Indeed, the ap-
proach described in this article is a special case of “ensemble
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learning” [Dietterich, 2000] because the variational free en-
ergy (minimized in ensemble learning) and the restricted
maximum likelihood (ReML) objective function (used be-
low) are the same thing under a linear model. Recently,
uncertainty has been addressed further by Bayesian model
averaging over different solutions and forward models [Tru-
jillo-Barreto et al., 2004]. The focus of this article is on com-
puting the dispersion or covariance of the conditional den-
sity using computationally efficient, analytic techniques.
This approach eschews stochastic or complicated descent
schemes by making Gaussian assumptions about random
effects in the forward model.

In a series of previous communications we have intro-
duced a solution to the inverse problem of estimating dis-
tributed sources causing observed responses in magnetoen-
cephalography (MEG) or electroencephalography (EEG)
data. The ill-posed nature of this problem calls for con-
straints, which enter as priors, specified in terms of covari-
ance components. By formulating the forward model as a
hierarchical system one can use empirical Bayes to estimate
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these priors. This is equivalent to partitioning the covariance
of observed data into observation error and a series of
components induced by prior source covariances. This par-
titioning uses ReML estimates of the covariance compo-
nents. The ensuing scheme has a number of advantages in
relation to alternative approaches such as “L-Curve” analy-
sis. First, it provides a principled and unique estimation of
the regularization, implicit in all inverse solutions to distrib-
uted sources [Phillips et al., 2005]. Second, it accommodates
multiple priors, which are balanced in an optimal fashion (to
maximize the evidence or likelihood of the data) [Phillips et
al., 2005]. Third, the role of different priors can be evaluated
in terms of the evidence of different models using Bayesian
model comparison [Mattout et al., submitted]. Finally, the
scheme is computationally efficient, requiring only the in-
version of ¢ X ¢ matrices where c is the number of channels.

Because the scheme is based on covariance component
estimation, it operates on second-order data matrices (e.g.,
sample covariance matrices). Usually these matrices summa-
rize covariances over peristimulus time. Current implemen-
tations of ReML in this context make some simplifying as-
sumptions about the temporal correlations. In this work, we
revisit these assumptions and generalize the previous
scheme to accommodate temporal constraints that assure the
conditional separability of the spatial and temporal re-
sponses. This separability means one can use the covariance
of the data over time to give very precise covariance com-
ponent estimates. Critically, this estimation proceeds in low-
dimensional channel space. After ReML, the covariance
components specify matrices that are used to compute the
conditional means and covariances of the underlying
sources.

To date, the ReML estimates have been used to construct
conditional (maximum a posteriori) estimates of the sources
at a particular time. We show below that the same frame-
work can easily provide images of energy expressed in any
time-frequency window, for example oscillations in the
5-25-Hz frequency band from 150-200 msec during a face
perception task [Henson et al., 2005a]. The analysis of both
evoked responses that are time-locked to trial onset and
induced responses that are not use exactly the same model
for a single trial; however, temporal priors on evoked and
induced responses are fundamentally different for multiple
trials. This is because there is a high correlation between the
response evoked in one trial and that of the next. Con-
versely, induced responses have a random phase-relation-
ship over trials and are, a priori, independent. We will
consider the implication these differences have for the ReML
scheme and the way data are averaged before estimation.

This work comprises five sections. In the first we briefly
reprise the ReML identification of conditional operators
based on covariances over time for a single trial. We then
consider an extension of this scheme that accommodates
constraints on the temporal expression of responses using
temporal basis functions. In the third section we show how
the same conditional operator can be used to estimate re-
sponse energy or power. In the fourth section we consider

extensions to the model that cover multiple trials and show
that evoked responses are based on the covariance of the
average response over trials, whereas global and induced
responses are based on the average covariance. In the fifth
section we illustrate the approach using toy and real data.

Basic ReML Approach to Distributed Source
Reconstruction

Hierarchical linear models

This section has been covered fully in our earlier descrip-
tions, so we focus here on the structure of the problem and
on the nature of the variables that enter the ReML scheme.
The empirical Bayes approach to multiple priors in the con-
text of unknown observation noise rests on the hierarchical
observation model

y=Lj+e®
]' — 8(2)
Cov(vec(e™)) = VO @ CV
Cov(vec(e?®)) = VP @ C?

C= 2 AQY
C = 2P (M

where y represents a ¢ X t data matrix of channels X time
bins. L is a ¢ X s lead-field matrix, linking the channels to the
s sources, and j is an s X t matrix of source activity over
peristimulus time. eM and €@ are random effects, represent-
ing observation error or noise and unknown source activity,
respectively. V®Wand V® are the temporal correlation ma-
trices of these random effects. In our previous work we have
assumed them to be the identity matrix; however, they could
easily model serial correlations and indeed non-stationary
components. CMand C® are the spatial covariances for
noise and sources, respectively; they are linear mixtures of
covariance components Q" and Q® that embody spatial
constraints on the solution. V¥ ® C™ represents a paramet-
ric noise covariance model [Huizenga et al., 2002] in which
the temporal and spatial components factorize. Here the
spatial component can have multiple components estimated
through \{", whereas the temporal form is fixed. At the
second level, V® ® C® can be regarded as spatiotemporal
priors on the sources p(j) = N(0, V® ® C®), whose spatial
components are estimated empirically in terms of \{*.

The ReML scheme described here is based on the two
main results for vec operators and Kronecker tensor prod-
ucts

vec(ABC) = (C" ® A)vec(B)
tr(A™B) = vec(A) vec(B) (2)

The vec operator stacks the columns of a matrix on top of
each other to produce a long column vector. The trace op-
erator tr(A) sums the leading diagonal elements of a matrix
A and the Kronecker tensor product A ® B replaces each
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element A;; of A with A;;B to produce a larger matrix. These
equalities enable us to express the forward model in equa-

tion (1) as

vec(y)=(I ® L)vec(j) + vec(e™)
vec(j) = vec(e?) (3)

and express the conditional mean ] and covariance 2 as

vec(f) = (VUL @ LICY Yvec(y)
=(V? ® CPLN(V® @ LCPL"+ VY @ C) 'vec(y)
2 — (V(Z)fl ® CO-14 yh-1 ® LTC(l)—lL)—l (4)

The first and second lines of equation (4) are equivalent by
the matrix inversion lemma. The conditional mean vec( f ) or
maximum a posteriori (MAP) estimate is the most likely
source, given the data. The conditional covariance S encodes
uncertainty about vec(j) and can be regarded as the disper-
sion of a distribution over an ensemble of solutions centered
on the conditional mean.

In principle, equation (4) provides a viable way of com-
puting conditional means of the sources and their condi-
tional covariances; however, it entails pre-multiplying a
very long vector with an enormous (st X ct) matrix. Things
are much simpler when the temporal correlations of noise
and signal are the same i.e., V" = V® = V. In this special
case, we can compute the conditional mean and covariances
using much smaller matrices.

j=My
3=v®c
M=C?L’C""
C=LC?L" + C"
C=@'cV'L+c ®)

Here M is a (s X ¢) matrix that corresponds to a MAP
operator that maps the data to the conditional mean. This
compact form depends on assuming the temporal correla-
tions V of the observation error and the sources are the
same. This ensures the covariance of the data cov(vec(y)) =
3 and the sources conditioned on the data 3 factorize into
separable spatial and temporal components

2=V ®CcC
S=ve®c (6)

This is an important point because equation (6) is not
generally true if the temporal correlations of the error and
the sources are different, i.e,, V®¥ # V®. Even if a priori
there is no interaction between the temporal and spatial
responses, a difference in the temporal correlations from the
two levels induces conditional spatiotemporal dependen-
cies. This means that the conditional estimate of the spatial
distribution changes with time. This dependency precludes

the factorization implicit in equation (5) and enforces a
full-vectorized spatiotemporal analysis equation (4), which
is computationally expensive.

For the moment, we will assume the temporal correlations
are the same and then generalize the approach in the next
section for some special cases of V" # V®.

Estimating the covariances

Under the assumption that V¥ = V@ = V, the only
quantities that need to be estimated are the covariance com-
ponents in equation (1). This proceeds using an iterative
ReML scheme in which the covariance parameters maximize
the log-likelihood or log-evidence

N = max In p(y|]\, Q) = REML(vec(y)vec(y)’, V ® Q)
(7)

In brief, the A = REML(A,B) operator decomposes a sam-
ple covariance matrix A into a number of specified compo-
nents B = (B, ...} so that A = 2; \;B;. The ensuing covari-
ance parameters A = {A; ...} render the sample covariance
the most likely. In our application, the sample covariance is
simply the outer product of the vectorized data vec(y)vec(y)”
and the components are V ® Q;. Here, Q = {Q{,...,
LQPLT, ...} are the spatial covariance components from the
first level of the model and the second level after projection
onto channel space through the lead-field.

ReML was originally formulated in terms of covariance
component analysis but is now appreciated as a special case
of expectation maximization (EM). The use of the ReML
estimate properly accounts for the degrees of freedom lost in
estimating the model parameters (i.e., sources) when esti-
mating the covariance components. The “restriction” means
that the covariance component estimated is restricted to the
null space of the model. This ensures that uncertainty about
the source estimates is accommodated in the covariance
estimates. The details of ReML do not concern us here (they
can be found in Friston et al. [2002] and Phillips et al. [2005]).
The key thing is how the data enter the log-likelihood that is
maximized by ReML'

1 1
Inpyn, Q) = — 5 tr(2 vec(y)vec(y)T) — 5 In|3|

1 1
=3 tr(ClyViyT) — 5 In|Clrank(V) (8)

The second line uses the results in equation (2) and shows
that the substitutions vec(y)vec(y)” — yV~'y"/rank(V) and V
® Q — Q do not change the maximum of the objective

'Ignoring constant terms. The rank of a matrix corresponds to the
number of dimensions it spans. For full-rank matrices, the rank is
the same as the number of columns (or rows).
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function. This means we can replace the ReML arguments in
equation (7) with much smaller (¢ X c) matrices.

N\ = REML(vec(y)vec(y)”, V & Q)
= REML(yV~'y"/rank(V), Q) (9)

Assuming the data are zero mean, this second-order ma-
trix yV~'y"/rank(V) is simply the sample covariance matrix
of the whitened data over the t time bins, where rank(V) = t.
The greater the number of time bins, the more precise is the
ReML covariance component estimators.

This reformulation of the ReML scheme requires the tem-
poral correlations of the observation error and the sources to
be the same. This ensures 3, = V ® C can be factorized and
affords the computational saving implicit in equation (9).
There is no reason, however, to assume that the processes
generating the signal and noise have the same temporal
correlations. In the next section we finesse this unlikely
assumption by restricting the estimation to a subspace de-
fined by temporal basis functions.

A Temporally Informed Scheme

In this section we describe a simple extension to the basic
ReML approach that enables some constraints to be placed
on the form of evoked or induced responses. This involves
relaxing the assumption that V& = V®. The basic idea is to
project the data onto a subspace (via a matrix S) in which the
temporal correlation of signal and noise are rendered for-
mally equivalent. This falls short of a full spatiotemporal
model but retains the efficiency of ReML scheme above and
allows for differences between V" and V® subject to the
constraint that STV®S = STVMg,

In brief, we have already established a principled and
efficient Bayesian inversion of the inverse problem for EEG
and MEG using ReML. To extend this approach to multiple
time bins we need to assume that the temporal correlations
of channel noise and underling sources are the same. In
reality, sources are generally smoother than noise because of
the generalized convolution implicit in synaptic and popu-
lation dynamics at the neuronal level [Friston, 2000]. By
projecting the time-series onto a carefully chosen subspace,
however, we can make the temporal correlations of noise
and signal formally similar. This enables us to solve a spa-
tiotemporal inverse problem using the reformulation of the
previous section. Heuristically, this projection removes
high-frequency noise components so that the remaining
smooth components exhibit the same correlations as signal.
We now go through the math that this entails.

Consider the forward model, where for notional simplic-
ity v®9 = v

y = LkS" + ¢
k=¢@
Cov(vec(eV)) =V ® CV

Cov(vec(e?)) = STVS ® C? (10)

This is the same as equation (1) with the substitution j
= kS”. The only difference is that the sources are estimated
in terms of the activity k of temporal modes. The orthonor-
mal columns of the temporal basis set S define these modes
where S”S = I.. When S has fewer columns than rows r < t,
it defines an r-subspace in which the sources lie. In other
words, the basis set allows us to preclude temporal response
components that are, a priori, unlikely (e.g., very high fre-
quency responses or responses before stimulus onset). This
restriction enables one to define a signal that lies in the
subspace of the errors.

In short, the subspace S encodes prior beliefs about when
and how signal will be evoked. They specify temporal priors
on the sources through V® = SSTV(WSST. This ensures that
STV®g = sTVIS because S'S = I, and renders the restricted
temporal correlations formally equivalent. We will see later
that the temporal priors on sources are also their posteriors,
V@ = V because the temporal correlations are treated as
fixed and known.

The restricted model can be transformed into a spatiotem-
porally separable form by post-multiplying the first line of
equation (10) by S to give

yS =Lk + €
k=¢e®
Cov(vec(e®)) = S'VS @ CWV

Cov(vec(e?)) = STVS ® C? (11)

In this model, the temporal correlations of signal and
noise are now the same. This restricted model has exactly the
same form as equation (1) and can be used to provide ReML
estimates of the covariance components in the usual way,
using equation (9)

1
A= REML(; yS(STVS) STy, Q) (12)

These are then used to compute the conditional moments
of the sources as a function of time

7= kST = MyssT
3=V ®C
1%

— SSTVSST (13)

The temporal correlations V are rank deficient and non-
stationary because the conditional responses do not span the
null space of S. This scheme does not represent a full spa-
tiotemporal analysis; it is simply a device to incorporate
constraints on the temporal component of the solution. A
full analysis would require covariances that could not be
factorized into spatial and temporal factors. This would
preclude the efficient use of ReML covariance estimation
described above. In most applications, however, a full tem-
poral analysis would proceed using the above estimates
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from different trial types and subjects [e.g., see Kiebel and
Friston, 2004b].

In the examples in the section about applications, we
specify S as the principal eigenvector of a temporal prior
source covariance matrix based on a windowed autocorre-
lation (i.e., Toeplitz) matrix. In other words, we took a
Gaussian autocorrelation matrix and multiplied the rows
and columns with a window-function to embody our a
priori assumption that responses are concentrated early in
peristimulus time. The use of prior constraints in this way is
very similar to the use of anatomically informed basis func-
tions to restrict the solution space anatomically [see Phillips
et al., 2002]. Here, S can be regarded as a temporally in-
formed basis set that defines a signal subspace.

Estimating Response Energy

In this section we consider the estimation of evoked and
induced responses in terms of their energy or power. The
energy is simply the squared norm (i.e., squared length) of
the response projected onto some time-frequency subspace
defined by W. The columns of W correspond to the columns
of a [wavelet] basis set that encompasses time-frequencies of
interest; for example, a sine—cosine pair of windowed sinu-
soids of a particular frequency. We deal first with estimating
the energy of a single trial and then turn to multiple trials.
The partitioning of energy into evoked and induced compo-
nents pertains only to multiple trials.

For a single trial the energy expressed by the ith source is

i WW'iL (14)
where j;. is the ith row of the source matrix over all time
bins. The conditional expectation of this energy obtains by
averaging over the conditional density of the sources. The
conditional density for the ith source over time is

p(ji,'h// N = N(fi,-/ CiiV)
fi. = M,ySS" (15)
and the conditional expectation of the energy is

(i WWTL), = tr(WW(iLj.),) = tr(WW(Lj. + CiV)
= M,.yGy'M].+C;tr(GV)

G = SSTWWTSS™ (16)

Note that this is a function of yGy’, the corresponding
energy in channel space E,. The expression in equation (16)
can be generalized to cover all sources, although this would
be a rather large matrix to interpret

E = (jGj"y,= MEM" + C t1(GV)

E,=yGy" (17)

The matrix E is the conditional expectation of the energy
over sources. The diagonal terms correspond to energy at
the corresponding source (e.g., spectral density if W com-
prised sine and cosine functions). The off-diagonal terms
represent cross energy (e.g., cross-spectral density or coher-
ence).

Equation (17) means that the conditional energy has two
components, one attributable to the energy in the condi-
tional mean (the first term) and one related to conditional
covariance (the second). The second component may seem a
little counterintuitive: it suggests that the conditional expec-
tation of the energy increases with conditional uncertainty
about the sources. In fact, this is appropriate; when condi-
tional uncertainty is high, the priors shrink the conditional
mean of the sources toward zero. This results in an under-
estimate of energy based solely on the conditional expecta-
tions of the sources. By including the second term the energy
estimator becomes unbiased. It would be possible to drop
the second term if conditional uncertainty was small. This
would be equivalent to approximating the conditional den-
sity of the sources with a point mass over its mean. The
advantage of this is that one does not have to compute the s
X s conditional covariance of the sources. However, we will
assume the number of sources is sufficiently small to use
equation (17).

In this section we have derived expressions for the con-
ditional energy of a single trial. In the next section we revisit
the estimation of response energy over multiple trials. In this
context, there is a distinction between induced and evoked
energy.

Averaging Over Trials

With multiple trials we have to consider trial-to-trial vari-
ability in responses. Conventionally, the energy associated
with between-trial variations, around the average or evoked
response, is referred to as induced. Induced responses are
normally characterized in terms of the energy of oscillations
within a particular time-frequency window. Because by def-
inition they do not show a systematic phase relationship
with the stimulus, they are expressed in the average energy
over trials but not in the energy of the average. In this article,
we use the term global response in reference to the total
energy expressed over trials and partition this into evoked
and induced components. In some formulations, a third
component due to stationary, ongoing activity is considered.
Here, we will subsume this component under induced en-
ergy. This is perfectly sensible, provided induced responses
are compared between trials when ongoing or baseline
power cancels.

Multitrial models

Hitherto we have dealt with single trials. When dealing
with multiple trials, the same procedures can be adopted but
there is a key difference for evoked and induced responses.
The model for n trials is
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Y =LK1, ® 9"+ eV
kY =(1, ® k?) +¢e?

K2 = ¢®
Cov(vec(eV) =1, ® V ® VvV
Cov(vec(e?®)) =1, ® S'VS ® C?

Cov(vec(e®)) = STVS ® C® (18)
where 1, = [1,...1] is a 1 X n vector and Y = [y;...y,
represents data concatenated over trials. The multiple trials
induce a third level in the hierarchical model. In this three-
level model, sources have two components: a component
that is common to all trials kX and a trial-specific component
¢®. These are related to evoked and induced response com-
ponents as follows.

Operationally we can partition the responses k™ in source
space into a component that corresponds to the average
response over trials, the evoked response, and an orthogonal
component, the induced response.

KO=k9(1, ® I)=k? +e?(1, ® 1)

KO =k, - 1,1,) ® 1) (19)
where 1, = [1/n,...,1/n]" is the generalized inverse of 1,,
and is simply an averaging vector. As the number of trials n
increases, the random terms at the second level are averaged
away and the evoked response k£ — k® approximates the
common component. Similarly, the induced response k —
€@ becomes the trial-specific component. With the definition
of evoked and induced components in place we can now
turn to their estimation.

Evoked responses

The multitrial model can be transformed into a spatio-
temporally-separable form by simply averaging the data Y
= Y(1,, ®1I,) and projecting onto the signal subspace. This is
exactly the same restriction device used above to accommo-
date temporal basis functions but applied here to the trial-
average. This corresponds to post multiplying the first level
by the trial-averaging and projection operator 1, ® S to give

YS=Lk©+g®
O=g®
Cov(vec(EV))=STVS ® CV
Cov(vec(e?))=STVS ® C© (20)

Here C® = (1/n)C™ and C© = (1/n)C® + C® is a
mixture of trial-specific and nonspecific spatial covariances.
This model has exactly the same form as the single-trial
model; enabling ReML estimation of C® and C that are
needed to form the conditional estimator M (see equation

[4])

1._ _
= REML(; YS(s'VvS)1sTYT, Q) (21)

The conditional expectation of the evoked response am-
plitude (e.g., event-related potential [ERP], or event-related
field [ERF]) is simply

7@ = MYSST
M= C(E)LT(LC(e)LT + C(l))*l
c = 2 QW
C= 2 \Q (22)

The conditional expectation of evoked power is then

E©Y = MEYM" + C tr(GV)

EY = YGY!
C — (LTC(l)flL + C(ﬂ)*l)*l (23)
where E;‘” is the evoked cross-energy in channel space. In
short, this is exactly the same as a single-trial analysis but
using the channel data averaged over trials. This averaging
is not appropriate, however, for the induced responses con-
sidered next.

Induced responses

To isolate and characterize induced responses, we effec-
tively subtract the evoked response from all trials to give Y
=Y({, — 1,1,) ®1,), and project this mean-corrected data
onto the signal subspace. The average covariance of the
ensuing data is used and then decomposed using ReML.
This entails post-multiplying the first level of the multitrial
model by (I, — 1,1,) ® S to give

Y(I, ® S) =Lk + &gV
K = g0
Cov(vec(gW)) =1, ® SVS @ CV

Cov(vec(e™)) =1, ® STVS @ C¥ (24)

In this transformation k® is a large s X nr matrix that
covers all trials. Again this model has the same spatiotem-
porally separable form as the previous models, enabling an

efficient ReML estimation of the covariance components of
C® and C?

A= REML(% Y(I, ® S(STVvS)"'SHYT, Q) (25)

The first argument of the ReML function is just the covari-
ance of the whitened, mean-corrected data averaged over
trials. The conditional expectation of induced energy, per
trial, is then

o1 5 1
EY = L MY(1,® G)Y'™M" + . Ctr(I, ® GV)
= MEYM" + C tr(GV)

1 ;
EY =Y, ® QY (26)
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Figure 1.
Restricted maximum likelihood (ReML) scheme. Schematic show-
ing the various applications of the ReML scheme in estimating
evoked and induced responses in multiple trials. See main text for
an explanation of the variables.

where E is the induced cross-energy per trial, in channel
space. The spatial conditional projector M and covariance C
are defined as above (equations [22] and [23]). Although it
would be possible to estimate the amplitude of induced
responses for each trial, this is seldom interesting.

Summary

The key thing to take from this section is that the estima-
tion of evoked responses involves averaging over trials and
estimating the covariance components. Conversely, the anal-
ysis of induced responses involves estimating covariance
components and then averaging. In both cases, the iterative
ReML scheme operates on small ¢ X ¢ matrices.

The various uses of the ReML scheme and conditional esti-
mators are shown schematically in Figure 1. All applications,
be they single trial or trial averages, estimates of evoked re-
sponses, or induced energy, rest on a two-stage procedure in
which ReML covariance component estimators are used to
form conditional estimators of the sources. The second thing to
take from this figure is that the distinction between evoked and
induced responses only has meaning in the context of multiple

trials. This distinction rests on an operational definition, estab-
lished in the decomposition of response energy in channel
space. The corresponding decomposition in source space af-
fords the simple and efficient estimation of evoked and in-
duced power described in this section. Interestingly, however,
conditional estimators of evoked and induced components are
not estimates of the fixed k® and random & effects in the
hierarchical model. These estimates would require a full
mixed-effects analysis. This will be the subject of a subsequent
article. Another interesting issue is that evoked and induced
responses in channel space (where there is no estimation per
se) represent a bi-partitioning of global responses. This is not
the case for their conditional estimates in source space. In other
words, the conditional estimate of global power is not neces-
sarily the sum of the conditional estimates of evoked and
induced power.

Applications

In this section we illustrate the above procedures using
toy and real data. The objective of the toy example is to
clarify the nature of the operators and matrices, to highlight
the usefulness of restricting the signal space and to show
algorithmically how evoked and induced responses are re-
covered. The real data are presented to establish a degree of
face validity, given that face-related responses have been
fully characterized in term of their functional anatomy. The
toy example deals with the single-trial case and the real data,
looking for face-specific responses, illustrates the multitrial
case.

Toy example

We generated data according to the model in equation (10)
using s = 128 sources, ¢ = 16 channels, and ¢t = 64 time bins.
The lead field L was a matrix of random Gaussian variables.
The spatial covariance components comprised

Q' = L
QP = DD
Q% = DFD’ (27)

where D was a spatial convolution or dispersion operator,
using a Gaussian kernel with a standard deviation of four
voxels. This can be considered a smoothness or spatial co-
herence constraint. F represents structural or functional MRI
constraints and was a leading diagonal matrix encoding the
prior probability of a source at each voxel. This was chosen
randomly by smoothing a random Gaussian sequence raised
to the power four. The noise was assumed to be identically
and independently distributed, V¥ = V = I,. The signal
subspace in time S was specified by the first » = 8 principal
eigenvectors of a Gaussian auto-correlation matrix of stan-
dard deviation 2, windowed with a function of peristimulus
time t*exp(—t/8). This constrains the prior temporal corre-
lation structure of the sources V@ = SSTVSST, which are
smooth and restricted to earlier time bins by the window-
function.

* 728 o



¢ Induced Responses ¢

Figure 2.

Simulated data. The spatial smoothness or co-
herence and MRI priors are shown in the top
panels. These are prior covariance compo-
nents, over sources, shown in image format.
The smoothness component is stationary (i.e.,
does not change along the diagonals), whereas
the fMRI prior changes with source location.
The resulting spatial priors A{PQ(® + \?PQ{?
are shown below. The temporal priors on the
sources SSTVSS™ are shown on the middle
right. Again, these are depicted as a covariance
matrix over time bins. Notice how this prior
concentrates signal variance in the first forty
time bins. Data (middle panel) were generated
in source space, using random Gaussian vari-
ates according to the forward model in equa-
tion (10) and the spatial and temporal priors
above. These were passed thought the lead-
field matrix to simulate channel data. In this
example, the lead field matrix was simply a
matrix of independent Gaussian variates. The
lower left panels show the channel data after
(left) and before (right) adding noise, over
time bins.

The hyperparameters were chosen to emphasize the MRI
priors A = \{Y, A, A?] = [1, 0, 8] and provide a signal to
noise of about one; measured as the ratio of the standard
deviation of signal divided by noise, averaged over chan-
nels. The signal to noise in the example shown in Figure 2
was 88%. The spatial coherence and MRI priors are shown at
the top of Figure 2. The resulting spatial priors are shown
below and are simply MPQ + A?QF?. The temporal priors
SSTVSST are shown on the middle right. Data (middle
panel) were generated in source space using random Gauss-
ian variates and the spatial and temporal priors above, ac-
cording to the forward model in equation (10). These were
passed through the lead-field matrix and added to observa-
tion noise to simulate channel data. The lower left panels
show the channel data with and without noise.

ReML solution

The simulated channel data were used to estimate the
covariance components and implicitly the spatial priors us-
ing equation (12). The resulting estimates of A = [\{, A{?,
A\ are shown in Figure 3 (upper panel). The small bars

/lf"’)Q,(E] + {E)QQE)

coherence prior MRI prior

spatial priors

Cc®

temporal priors

represent 90% confidence intervals about the ReML esti-
mates, based on the curvature of the log-likelihood in equa-
tion (7). The large bars are the true values. The ReML
scheme correctly assigns much more weight to the MRI
priors to provide the empirical prior in the lower panel (left).
This ReML estimate (left) is virtually indistinguishable from
the true prior (right).

Conditional estimates of responses

The conditional expectations of sources, over time, are
shown in Figure 4 using the expression in equation (13). The
upper left panel shows the true and estimated spatial profile
at the time-bin expressing the largest activity (maximal de-
flection). The equivalent source estimate over time is shown
on the right. One can see the characteristic shrinkage of the
conditional estimators in relation to the true values. The full
spatiotemporal profiles are shown in the lower panels.

Conditional estimates of response energy

To illustrate the estimation of energy, we defined a time-
frequency window W = [w(t)sin(wt), w(t)cos(wt)] for one
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Figure 3.

Restricted maximum likelihood (ReML) solution. The ReML esti-
mates of A = [\{", A\, \{?] are shown in the upper panel. The
small bars represent 90% confidence intervals about the ReML
estimates based on the curvature of the log likelihood. The large
bars are the true values. The ReML scheme correctly assigns more
weight to the MRI priors to provide the empirical prior in the
lower panel (left). This ReML estimate is virtually indistinguishable
from the true prior (right).

frequency, w, over a Gaussian time window, w(t). This time-
frequency subspace is shown in the upper panels of Figure
5. The corresponding energy was estimated using equation
(17) and is shown with the true values in the lower panels.
The agreement is evident.

Analysis of real data

We used MEG data from a single subject while they made
symmetry judgments on faces and scrambled faces (for a
detailed description of the paradigm see Henson et al.
[2003]). MEG data were sampled at 625 Hz from a 151-
channel CTF Omega system (VSM MedTech, Coquitlam,
Canada) at the Wellcome Trust Laboratory for MEG Studies,
Aston University, England. The epochs (80 face trials, col-
lapsing across familiar and unfamiliar faces, and 84 scram-
bled trials) were baseline-corrected from —100 msec to 0
msec. The 500 msec after stimulus onset of each trial entered
the analysis. A T1-weighted MRI was also obtained with a
resolution 1 X 1 X 1 mm?®. Head-shape was digitized with a
3D Polhemus Isotrak (Polhemus, Colchester, VT) and used
to coregister the MRI and MEG data. A segmented cortical
mesh was created using Anatomist (http:/ /brainvisa.info/ /)
[Mangin et al., 2004], with approximately 4,000 dipoles ori-
ented normal to the gray matter. Finally, a single-shell

spherical head model was constructed using BrainStorm
(http:/ /neuroimage.usc.edu/brainstorm/) [Baillet et al.,
2004] to compute the forward operator L.

The spatial covariance components comprised

Q=1
QP = DD* (28)
where spatial smoothness operator D was defined on the
cortical mesh using a Gaussian kernel with a standard de-
viation of 8 mm. We used only one, rather smooth spatial
component in this analysis. This was for simplicity. A more
thorough analysis would use multiple components and
Bayesian model selection to choose the optimum number of

true and estimated signal

true and estimated signal

04

2 40 6D 80 100 120 0 40 60

soUrca lime

lime

Figure 4.

Conditional estimates of responses. The upper panel shows the
true and estimated spatial profile at the time-bin expressing the
largest activity (upper left). The equivalent profile, over time, is
shown on the upper right for the source expressing the greatest
response. These graphs correspond to sections (dotted lines)
though the full spatiotemporal profiles shown in image format
(lower panels). Note the characteristic shrinkage of the maximum
aposteriori (MAP) estimates relative to the true values that fol-
lows from the use of shrinkage priors (that shrink the conditional
expectations to the prior mean of zero).
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Figure 5.
Conditional estimates of response energy. A time-frequency sub-
space W is shown in the upper panels as functions of time (left) and
in image format (right). This subspace defines the time-frequency
response of interest. In this example, we are testing for frequency-
specific responses between 10 and 20 time bins. The correspond-
ing energy estimates are shown over sources with the true values
in the middle panel. Note the remarkable correspondence. The
lower panels show the cross-energy over sources with estimates
on the left and true values on the right. The energies in the middle
panel are the leading diagonals of the cross-energy matrices,
shown as images below. Again note the formal similarly between
the true and estimated cross-energies.

components [Mattout et al., submitted]. As with the simu-
lated data analysis, the noise correlations were assumed to
be identical and independently distributed, V" = I, and the
signal subspace in time S was specified by the first r = 50
principal eigenvectors of the windowed auto-correlation
matrix used above.

We focused our analysis on the earliest reliable difference
between faces and scrambled faces, as characterized by the
M170 component in the ERF (Fig. 6, middle panel). A fre-
quency band of 10-15 Hz was chosen on the basis of reliable
differences (P < 0.01; corrected) in a statistical parametric map
(time-frequency SPM) of the global energy differences (Fig. 6,

upper right) around the M170 latency [Henson et al., 2005a].
The ensuing time-frequency subspace was centered at 170
msec (Fig. 6; middle).

RESULTS

The lower panel of Figure 6 shows evoked and induced
power in channel space as defined in equations (23) and (26)
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Figure 6.

Real data analysis: sensor level. The upper panel shows the differences
measured on the scalp between faces and scrambled faces, in terms of
the event-related field (ERF) from a single sensor (left), and the global
energy over sensors (right) using standard time-frequency analysis
and statistical parametric mapping [Kilner et al, 2005]. The time-
frequency subspace W we tested is shown in the middle panel by
plotting each column as a function of time. This uses the same
representation as the first panel of the previous figure. This subspace
tests for responses in the o range, around 200 msec (see correspond-
ing time-frequency effect in the upper right panel). The corresponding
induced and evoked energy distributions over the scalp are shown in
the lower panel for two conditions (faces and scrambled faces).
[Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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respectively. Power maps were normalized to the same max-
imum for display. In both conditions, maximum power is
located over the right temporal regions; however, the range
of power values is much wider for the evoked response.
Moreover, whereas scalp topographies of induced responses
are similar between conditions, the evoked energy is clearly
higher for faces, relative to scrambled faces. This suggests
that the M170 is mediated by differences in phase-locked
activity.

This is confirmed by the power analysis in source space
(Fig. 7), using equations (23) and (26). Evoked and induced
responses are generated by the same set of cortical regions.
The differences between faces and scrambled faces in terms
of induced power, however, are weak compared to the
equivalent differences in evoked power (see the scale bars in
Fig. 7). Furthermore, the variation in induced energy over
channels and conditions is small relative to evoked power.
This nonspecific profile suggests that ongoing activity may
contribute substantially to the induced component. As men-
tioned above, the interesting aspect of induced power usu-
ally resides in trial-specific differences. A full analysis of
induced differences will be presented elsewhere. Here we
focus on the functional anatomy implied by evoked differ-
entials. The functional anatomy of evoked responses, in this
context, is sufficiently well known to establish the face va-
lidity of our conditional estimators:

The upper panel of Figure 8 shows the cortical projection
of the difference between the conditional expectations of
evoked energy for faces versus scrambled faces. The largest
changes were expressed in the right inferior occipital gyrus
(IOG), the right orbitofrontal cortex (OFC), and the horizon-

| " I ;
03 15 0.24 088

I| 0935

Serambled

Figure 7.

Real data analysis: source level. Reconstructed
evoked and induced responses are shown for
both faces and scrambled face trials. These
data correspond to conditional expectations
rendered onto a cortical surface. These views
of the cortical surface are from below. (i.e.,
left is on the right). Evoked power was nor-
malized to the maximum over cortical
sources. [Color figure can be viewed in the
online issue, which is available at www.
interscience.wiley.com.]

tal posterior segment of the right superior temporal sulcus
(STS). Figure 9 shows the coregistration of these energy
changes with the subject’s structural MRI. Happily, the “ac-
tivation” of these regions is consistent with the equivalent
comparison of fMRI responses [Henson et al., 2003].

The activation of the ventral and lateral occipitotemporal
regions is also consistent with recent localizations of the
evoked M170 [Henson et al., 2005b; Tanskanen et al., 2005].
This is to be expected given that the most of the energy
change seems to be phase-locked [Henson et al., 2005a].
Indeed, the conditional estimates of evoked responses at the
location of the maximum of energy change in the right IOG
and right posterior STS show a deflection around 170 msec
that is greater for faces than scrambled faces (Fig. 8, lower
panel).

We have not made any inferences about these effects.
SPMs of energy differences would normally be constructed
using conditional estimates of power changes over subjects.
It is also possible, however, to use the conditional densities
to compute a posterior probability map (PPM) of non-zero
changes for a single subject. We will demonstrate inference
using these approaches elsewhere.

CONCLUSION

We have described an extension of our empirical Bayes
approach to MEG/EEG source reconstruction that covers
both evoked and induced responses. The estimation scheme
is based on classical covariance component estimation using
restricted maximum likelihood (ReML). We have extended
the scheme using temporal basis functions to place con-
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MNormalized evoked power
changes (faces - scramibled)

Figure 8.
Real data analysis: evoked responses. The up-
per panel shows the reconstructed evoked
power changes between faces and scrambled
faces. The lower panel shows the recon-
structed evoked responses associated with
three regions where the greatest energy
change was elicited. [Color figure can be
viewed in the online issue, which is available at
www.interscience.wiley.com.]

0 100 200

straints on the temporal form of the responses. We show
how one can estimate evoked responses that are phase-
locked to the stimulus and induced responses that are not.
This inherent distinction calls for different transformations
of a hierarchical model of multiple trial responses to provide
Bayesian estimates of power.

Oscillatory activity is well known to be related to neural
coding and information processing in the brain [Fries et al.,
2001; Hari and Salmelin, 1997; Tallon-Baudry et al., 1999].
Oscillatory activity refers to signals generated in a particular
frequency band time-locked but not necessarily phase-
locked to the stimulus. Classical data averaging approaches
may not capture this activity, which calls for trial-to-trial
analyses. Localizing the sources of oscillatory activity on a
trial-by-trial basis is computationally demanding, however,
and requires data with low signal-to-noise ratio. This is why
early approaches were limited to channel space [e.g., Tallon-
Baudry et al,, 1997]. Recently, several inverse algorithms
have been proposed to estimate the sources of induced
oscillations. Most are distributed (or imaging) methods,
since equivalent current dipole models are not suitable for
explaining a few hundreds of milliseconds of nonaveraged
activity. Among distributed approaches, two main types can
be distinguished: the beamformer [Cheyne et al., 2003; Gross
et al., 2001; Sekihara et al., 2001] and minimum-norm-based

30 400 50 0

100 200 300 400 500 O 100 200 300 400 500

time {ms) time: (s fime (ms)
Estimated cortical ~—— scrambled
evoked responses —— faces

techniques [David et al., 2002; Jensen and Vanni, 2002],
although both can be formulated as (weighted) minimum
norm estimators [Hauk, 2004]. A strict minimum norm so-
lution obtains when no weighting matrix is involved [Ha-
malainen et al., 1993] but constraints such as fMRI-derived
priors have been shown to condition the inverse solution
[Lin et al., 2004]. Beamformer approaches implement a con-
strained inverse using a set of spatial filters (see Huang et al.
[2004] for an overview). The basic principle employed by
beamformers is to estimate the activity at each putative
source location while suppressing the contribution of other
sources. This means that beamformers look explicitly for
uncorrelated sources. Although some robustness has been
reported in the context of partially correlated sources [Van
Veen et al., 1997], this aspect of beamforming can be annoy-
ing when trying to characterize coherent or synchronized
cortical sources [Gross et al., 2001].

Recently, we proposed a generalization of the weighted-
minimum norm approach based on hierarchical linear mod-
els and empirical Bayes, which can accommodate multiple
priors in an optimal fashion [Phillips et al., 2005]. The ap-
proach involves a partitioning of the data covariance matrix
into noise and prior source variance components, whose
relative contributions are estimated using ReML. Each
model (i.e., set of partitions or components) can be evaluated
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Figure 9.

Visualization on the subject MRI. The regions identified as showing
energy changes for faces versus scrambled faces in Figure 8 are
shown coregistered with a MRl scan: the right orbitofrontal cortex
(OFC; upper panel), the right inferior occipital gyrus (IOG; middle
panel), and the posterior right superior temporal sulcus (STS;
lower panel). These source estimates are shown both as cortical
renderings (from below) and on orthogonal sections through a
structural MRI, using the radiological convention (right is left).

using Bayesian model selection [Mattout et al., submitted].
Moreover, the ReML scheme is computationally efficient, re-
quiring only the inversion of small matrices. So far this ap-
proach has been limited to the analysis of evoked responses,
because we have focused on the estimation of spatial covari-
ance components under simple assumptions about the tempo-
ral correlations. In this article, we provided the operational
equations and procedures for obtaining conditional estimates
of responses with specific temporal constraints over multiple
trials. The proposed scheme offers a general Bayesian frame-
work that can incorporate all kind of spatial priors such as
beamformer-like spatial filters or fMRI-derived constraints.
Furthermore, basis functions enable both the use of computa-
tionally efficient ReML-based variance component estimation
and the definition of priors on the temporal form of the re-
sponse. This implies a separation of the temporal and spatial
dependencies both at the sensor and source levels using a
Kronecker formulation [Huizenga et al., 2002]. Thanks to this
spatiotemporal approximation, the estimation of induced re-
sponses from multitrial data does not require a computation-
ally demanding trial-by-trial approach [Jensen and Vanni,
2002] or drastic dimension reduction of the solution space
[David et al., 2002].

The approach described in this article allows for spatio-
temporal modeling of evoked and induced responses under
the assumption that there is a subspace S in which temporal
correlations among the data and signal have the same form.
Clearly this subspace should encompass as much of the
signal as possible. In this work, we used the principal eig-
envariates of a prior covariance based on smooth signals
concentrated early in peristimulus time. This subspace is
therefore informed by prior assumptions about how and
when signal is expressed. A key issue here is what would
happen if the prior subspace did not coincide with the true
signal subspace. In this instance there may be a loss of
efficiency as experimental variance is lost to the null space of
S; however, there will be no bias in the (projected) response
estimates. Similarly, the estimate of the error covariance
components will be unbiased but lose efficiency as high
frequency noise components are lost in the restriction. Put
simply, this means the variability in the covariance param-
eter estimates will increase, leading to a slight overconfi-
dence in conditional inference. The overconfidence problem
is not an issue here because we are only interested in the
conditional expectations, which would normally be taken to
a further (between-subject) level for inference.

As proof of principle, we used a toy example and a
single-subject MEG data set to illustrate the methodology for
single-trial and multiple-trial analyses, respectively. The toy
data allowed us to detail how spatial and temporal priors
are defined whereas the real data example provisionally
addressed the face validity of the extended framework. In
future applications, the priors will be considered in greater
depth, such as fMRI-derived constraints in the spatial do-
main and autoregressive models in the temporal domain.
Importantly, SPM of the estimated power changes in a par-
ticular time-frequency window, over conditions or over sub-
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jects, can be now achieved at the cortical level [Brookes et al.,
2004; Kiebel and Friston, 2004a]. Finally, with the appropri-
ate wavelet transformation, instantaneous power and phase
could also be estimated to study cortical synchrony.
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