

Introduction to MRI Physics

Marta M. Correia
MRC Cognition and Brain Sciences Unit

Overview

- Nuclear Magnetic Resonance Imaging (NMR)
 - Basic Principles
 - Excitation, Relaxation and Signal

- Magnetic Resonance Imaging (MRI)
 - Spatial Encoding in MRI
 - Image formation and k-space
 - Image contrast

Part I: Nuclear Magnetic Resonance (NMR)

MR images: What do we see?

- MRI images are usually based on the signal from protons
- A proton is the nucleus of the hydrogen atom
- Hydrogen is the most common element in tissue
- The signal from protons is due to their spin

The Nuclear spin

- Elementary property of an atomic nucleus
- Each spin carries an elementary magnetization
- Spins align in an external magnetic field (like a compass needle)

Macroscopic sample

Macroscopic sample

Precession and Larmor Frequency

Precession and Larmor Frequency

$$\omega_0 = \gamma B_0$$

Precession and Larmor Frequency

$$\omega_0 = \gamma B_0$$

Macroscopic sample

Macroscopic sample

Magnetic Resonance

Energy

Magnetic Resonance

- Exchange of energy between two systems at a specific energy is called resonance.
- Magnetic resonance corresponds to the energetic interaction between spins and electromagnetic radiofrequency (RF).
- Only protons that spin with the same frequency as the electromagnetic RF pulse will respond to that RF pulse.

Excitation, Relaxation and Signal Formation

 During excitation, longitudinal magnetization decreases and a transverse magnetization appears.

- Longitudinal magnetization decrease is due to a difference in the number of spins in parallel and anti-parallel state.
- Transverse magnetization is due to spins getting into phase coherence.

 During excitation, longitudinal magnetization decreases and a transverse magnetization appears.

- Longitudinal magnetization decrease is due to a difference in the number of spins in parallel and anti-parallel state.
- Transverse magnetization is due to spins getting into phase coherence.

Relaxation

Two independent relaxation processes:

T₁: "longitudinal relaxation time"(≈ 1 s) - energy exchange between spins and their surroundings

T₂: "transverse relaxation time" (≈ 100 ms) – dephasing due to spin/spin interactions

Relaxation

- Transverse Magnetization vanishes quickly (short T₂)
- Longitudinal Magnetization relaxes slowly (long T₁)

t~100ms

Precession and signal induction

123 MHz @ 3T

NMR signal

Signal loss due to B₀ inhomogeneity

$$\omega_0 = \gamma B_0$$

has higher frequency than

Effective transverse relaxation (T₂*)

Spin dephasing as a result of magnetic field Transverse relaxation (T_2) inhomogeneities Effective transverse relaxation $(T_2^* < T_2)$

Effective transverse relaxation (T₂*)

No inhomogeneities $(T_2^* = T_2 = 100 \text{ ms})$

Moderate inhomogeneities $(T_2^* = 40 \text{ ms})$

Strong inhomogeneities $(T_2^* = 10 \text{ ms})$

T₂* related signal dropouts

T₂* reduction due to local field inhomogeneities ⇒ signal dropouts

Part II: Magnetic Resonance Imaging (MRI)

Spatial Encoding in MRI

The principles of MRI

Homogeneous magnetic field

$$\omega_0 = \gamma B_0$$

Add magnetic field gradient

$$\omega = \gamma \left(\mathbf{B}_0 + \mathbf{s} \; \mathbf{G}_{\mathbf{s}} \right)$$

Slice selective excitation

- Only spins in the slice of interest have frequency ω₀
- RF pulse with frequency ω_0 excites only spins in slice of interest

Slice orientation

Multi-slice MRI

$$\omega = \gamma (\mathbf{B}_0 + \mathbf{s} \ \mathbf{G}_{\mathbf{s}})$$

Slice profile

Slice profile

Slice thickness

Slth= Full width at half maximum of the slice profile

Multi-slice MRI

Tissue in the inter-slice gap contributes to the signal of the adjacent slices

Frequency and phase encoding

Phase encoding

Phase encoding and spatial information

After the phase encoding gradient

How does phase encoding translate into spatial information?

- The magnetization in the xy plane is wound into a helix directed along y axis.
- Phases are 'locked in' once the phase encode gradient is switched off.

From Larry Wald

Signal after phase encoding

From Larry Wald

MRC Cognition and Brain Sciences Unit

mrc-cbu.cam.ac.uk

Signal after phase encoding

From Larry Wald

Gradient area and helix shape

Signal intensity measured at a spatial frequency

Frequency encoding

Frequency encoding

- Spins in position x₁ and x₂ experience different B field and will get out of phase.
- The longer the gradient is applied for, the larger the phase difference.

Pulse sequence

Image reconstruction and k-space

k-space

Problem: This sequence is rather slow

- K space is sampled line by line
- After each excitation one must wait for the longitudinal magnetization to recover

Example:
$$n = 256$$
, $TR = 2s$ \Rightarrow $T = n TR = 8.5 min$

$$\Rightarrow$$

$$T = n TR = 8.5 min$$

Echo Planar Imaging (EPI)

Image Contrast

Echo Time (TE) and Repetition Time (TR)

Echo Time (TE) and Repetition Time (TR)

Tissue Contrast

T1-weighted
Bright fat, Short TR & TE

T2-weighted
Bright fluid, Long TR & TE

Ridgeway, J. (2010) Cardiovascular magnetic resonance physics for clinicians: Part I

Tissue Contrast

T1-weighted
Bright fat, Short TR & TE

T2-weighted
Bright fluid, Long TR & TE

Ridgeway, J. (2010) Cardiovascular magnetic resonance physics for clinicians: Part I

Acknowledgements

- Christian Schwarzbauer
- Rhodri Cusack
- Larry Wald
- Danny Mitchell

Thank you

