
M tl b Matlab
Introduction I:

Basic concepts,
commands, and

structure

Jason Taylor
MRC Cognition & Brain

Sciences Unit
C b idCambridge

21 November 2011

[from xkcd.com]

jason.taylor@mrc-cbu.cam.ac.uk

Outline

- Why Matlab?y
- A Brief (Interactive) Introduction to Matlab

→ Starting Matlab

→ Path

→ Workspace

→ Numeric Variables

→ Maths/Logic

→ Strings, Cells, Structures

Loops→ Loops

- Scripts and Functions
→ An Example Script

→ An Example Function

- HELP?! (Where to get it)

* NOTE: All of this is available in: /imaging/jt03/demo

Why Matlab?
...or any other command-line software

There are distinct advantages to analysing your data using
scripts and functions:

- Leave data in its original format

Retain a complete record of all processing- Retain a complete record of all processing

- Hard work for the first subject, easy sailing for the rest

- Easily modify analysis pipeline and re-run analyses

Alternatives to Matlab:

- Octave (free!) … matlab clone

- S-Plus (not free) or R (free!) … stats

- Yes, you can script Excel (Visual Basic) and SPSS (syntax) too, but
these are less flexible/powerful

Why Matlab?
… specifically

Versatility:
- StatisticsStatistics

- Image Processing

- Signal Processing

3 i li i- 3D Visualisation

- Custom
see: http://www.mathworks.com/matlabcentral/fileexchange

Neuroimaging (MRI, fMRI, DTI, M/EEG)
- SPM

- GIFT / EEGIFT

- EEGLAB / FMRLAB- EEGLAB / FMRLAB

- FieldTrip

- etc.

A Brief (Interactive) Introduction
t M tl bto Matlab

Go to demo (brief_intro_to_matlab.m)

On the following slides I've simply copied the contents On the following slides I ve simply copied the contents
of brief_intro_to_matlab.m, one cell per page. It's
meant to be explored interactively and run line-by-line,
so why not go open it in Matlab Editor and try it out? so y o go op d o d y ou

(Otherwise, skip ahead to slide 22)

% A Brief Introduction to Matlab
%
% This script is intended to introduce novices to
% the Matlab environment. It is meant to be executed
% line-by-line, allowing for interactive exploration
% of data types and whatnot.
%%
% Notes:
% - odd spaces between cells for demonstration purposes!
% navigate between cells using <ctrl>+<down> <ctrl>+<up>% - navigate between cells using <ctrl>+<down> <ctrl>+<up>
%
% by Jason Taylor (18 Nov 2011)
% C C iti d i S i it% MRC Cognition and Brain Sciences Unit
% Cambridge, UK
% email: <first>.<last>@mrc-cbu.cam.ac.uk
%

%% SOME TIPS:
%
% GENERAL:
% % indicates a comment (ignored)
% ; (@ end of command) means don't print result% ; (@ end of command) means don t print result
%
% COMMAND WINDOW:
% >> this is the 'prompt': type commands here!% >> this is the prompt : type commands here!
% <up> scrolls through command history, last-to-first
% - all commands if you've typed nothing
% t hi d if ' t d thi% - matching commands if you've typed something
% <tab> completes (e.g., mea<tab> gives 'mean'...)
% <ctrl+c> stop command
% clc clears command window
%
% EDITOR:
% %% begins a new 'cell' (section of code)
% <F9> executes a highlighted line (or set of lines)
% <ctrl+dn> go to next cellg
% <ctrl+up> go to prev cell

%% STARTING MATLAB

% Windows: Start->Matlab or double-click icon
% * Note: can set startup preferences in shortcut
% e.g., starting dir, -nojvm, etc.% e.g., starting dir, nojvm, etc.

% Linux Machines:
% Type 'matlab'% Type matlab
% Type 'matlab <-options>'
% Type 'spm <options>' *wrapper script @ CBU
% d% ... see demo ...

%% Matlab & Linux

% Within matlab, linux commands can be run:
% ! <command>
% or:% or:
% [status,result] = unix(<command>);

% e g :% e.g.:
! hostname
[status,hname] = unix('hostname');
if t t f i tf(1 'Y t d t % \ ' h) dif ~status, fprintf(1,'You are connected to %s\n',hname); end

%% PATH
% = search path Matlab uses to identify and executep y
% commands, functions, scripts...

% Report the contents of path:% Report the contents of path:
path

% Add a directory to your path (prepend):% Add a directory to your path (prepend):
% >> addpath <path/to/directory>

%% e.g.,
addpath /imaging/jt03/demo/scripts/
% or, append:
addpath /imaging/jt03/demo/scripts/ -END

% edit /home/<user>/matlab/startup.m

% Find the path of a particular function/script/command:
% which <command>
which mean

%% THE WORKSPACE
% = variables that are currently available to be usedy
% by you (or by functions as input)

% Two ways to get the mean of a vector:% Two ways to get the mean of a vector:
mean([4.1 3.3 4.8]) % <-this will give you the answer

% or% or,
x = [4.1 3.3 4.8] % <- this will store the values
mx = mean(x) % and the answer in variables

%% ... and now you can:

% - get other summary statistics,
sx = std(x)
[min(x) max(x)][min(x) max(x)]

% - plot
bar(x);bar(x);
hold on;
plot(2,mx,'ko','MarkerFaceColor','r','MarkerSize',12);

% - write it to a text file:
dlmwrite('x.txt',x,'\t');

% - save as a .mat file
save('x.mat','x');
clear x
load('x.mat')

% - etc.
figure; imagesc(rand(64,64)*std(x));

%% Some WORKSPACE Commands:

% List names of all variables in the workspace:
who

% List names, size, class of all variables in the workspace:
whos

% List ... of a subset of variables in the workspace:
% whos [<variablenamelist>]

% eg.,
whos x
whos *x* % <- '*' = wildcard

% Clear (all or subset of) variables out of workspace:
clear x

%% NUMERIC VARIABLES:

% Scalar values:
x = 42

% Vectors:
xvec = [1 2 3 4 5 6]
xvec2 = 1:6 % equivalentxvec2 = 1:6 % equivalent

% Matrices:
t [1 2 3 4 5 6 7 8 9]xmat = [1 2 3; 4 5 6; 7 8 9]

xmat'

% N-dimensional arrays:
x3d = cat(3,xmat,xmat+10)

% Get size of each dimension:
size(xmat)

% Indexing:
xmat(:,[2 3]) % <- all rows, columns 2 and 3

%% MATHS:

% Add/subtract
42 + 10
x + 10x + 10
y = x - 10

% Multiply/divide (scalar):% Multiply/divide (scalar):
y = x * 5
y = x/2

% Multiply/divide (vector):
y = xvec .* [10 100 1000 10 100 1000]
y = xvec/(xvec(1))

% etc.:
y = sqrt(x^3)

%% LOGIC & LOGICAL INDEXING:

% Logic:
v = xvec*10
v > 30v > 30
v > 30 & v ~= 60

% Find index of 'true' (or nonzero generally):% Find index of true (or nonzero, generally):
find(v>30 & v~=60)

% U l i l i d% Use logical index:
v(v>30 & v~=60)
v(find(v>30 & v~=60)) % equivalent

% Use logical index on a different variable:
xvec(v>30 & v~=60)

% Valid numbers:
v(end) = NaN()
v(~isnan(v))

%% STRINGS AND CELLS:

% Strings:
mystring = 'hello world'
xstr = '42' % not the same as x = 42 (see 'isnumeric')xstr 42 % not the same as x 42 (see isnumeric)

% String matching:
findstr('o' mystring)findstr(o ,mystring)
findstr('world',mystring)

% C ll (i t i)% Cell arrays (may mix types, sizes):
mycell = {'hello' 'world'}
xcell = {x xstr}
xcell(2)
xcell{2}

% Cell-string matching:
strmatch('world',mycell)

%% STRUCTURES
% ** SPM users take note **

% Struct:
S = struct()S struct()
S.subj = 's01'
S.sex = 'male'
S age = 27S.age = 27
S.data = [1 2 3 4 5 6]
isfield(S,'age')

% Adding layers:
S(2).subj = 's02';
S(2).sex = 'female';
S(2).age = 19;
S(2).data = [11 12 13 14 15 16]

% Extracting data:
[S.age][g]
{S.sex}

%% LOOPS:

% For loop:
for i = 1:10

if i>3, fprintf(1,'subject %02d\n',i); endif i>3, fprintf(1, subject %02d\n ,i); end
end

% While loop:% While loop:
i = 0;
while i<3

i i+1i = i+1;
fprintf(1,'subject %02d\n',i);

end

%% Loops continued

% Switch ... case ... otherwise ...
switch S(1).sex

case 'male'case male
fprintf(1,'He is subject 1.\n');

case 'female'
fprintf(1 'She is subject 1 \n');fprintf(1, She is subject 1.\n);

otherwise
fprintf(1,'Subject 1''s sex was not recorded.\n');

dend

%% That's enough for now!

% On to scripts and functions...

% If you got here via the presentation, type 'return' +% If you got here via the presentation, type return +
[ENTER] at the
% command line, or highlight and <F9>:

return

Functions vs. (Batch) ScriptsFunctions vs. (Batch) Scripts

Function: Script:
- General

(usually applies to any data, project)

- Run as command

- 'Hack and Run'

(customise to your data, project)

- Copy&Paste (<F9>) or command u as co a d

(specify input, output arguments)

- Variables do not stay in
workspace

Copy& aste (9) o co a d

(no arguments allowed)

- Variables stay in workspace
workspace
(except input/output arguments,
debugging environment)

- Can get help by typing:Ca get e p by typ g
help <function name>

- First line of code MUST BE:

[<output>] = function(<input>)

Both are text files, which you can edit in Matlab’s editor (see edit command)
or your favourite text editor (emacs, nedit, gedit, wordpad, notepad, etc.)
NOTE: These vary in terms of debugging friendliness!

Yo ma sta t iting a batch sc ipt then late find it You may start writing a batch script, then later find it
useful to convert sections of it into functions.

An Example Batch ScriptAn Example Batch Script

Go to demo (demo_script_cell_by_cell.m)

On the following slides I've simply copied the contents of On the following slides I've simply copied the contents of
demo_script_cell_by_cell.m, which shows the evolution of a
simple script to analyse response time data from 15 subjects
and produce a figure with a bar plot of mean RT + standard
error bars. You can also view and run the resulting script –
demo_script_simple.m –and the more elaborate version –
demo_script_final.m –in the CBU imaging workspace.

More information is given in demo_readme.m

%
% This is what I showed in the demonstration. It is meant to show
% the evolution of demo_script_simple.m:
%
% - First, write description of what the script will do
% S d it t d ibi h t% - Second, write comments describing each step
% - Third, flesh out each step with code
%
% The 'strings' at the top of each cell are annotations.% The strings at the top of each cell are annotations.
%
% Use <ctrl>+<down> and <ctrl>+<up> to navigate between cells.
%
% by Jason Taylor (21 Nov 2011)
%

%%

'At top: What the script does, when created (updated)?'

% This is a batch script to get the median of each subject's RT data,
% l t th d d t d d f th t diti% plot the grand mean and standard error for the two conditions.
%
% by Jason Taylor (17/11/2008)
% + updated (jt 17/11/2008): added error bars% + updated (jt 17/11/2008): added error bars
%

%%

'In body: Write an outline using comments'

% (1) D fi di t fil bj t t% (1) Define directory, filename, subject parameters

% (2) Get each subject's median RT

% (3) Compute grand mean, standard error

% (4) Plot bar graph with error bars

%%

'Then fill in with increasingly specific comments (as necessary) &
commands'

% (1) Define directory, filename, subject parameters:

% Project directory:% Project directory:
projdir = '/imaging/jt03/demo/rtdata/subjects';

% Working directory: * CHANGE to a dir you have permission to write to!
wkdir = '/imaging/jt03/demo/rtdata/ga15';

% Subjects:
subjects = [1:15];subjects = [1:15];

%%

'...continue to fill in ...'

% (2) G t h bj t' di RT% (2) Get each subject's median RT:

% Initialise variable (subjects x conditions) to collect median RTs:
mdrt = zeros(length(subjects),2);mdrt zeros(length(subjects),2);

% Loop over subjects:
for i = 1:length(subjects)

% Get current subject label:
subj = sprintf('s%02d',subjects(i));

% Go to subject's directory, load data:
cd(fullfile(projdir,subj));
load('word nonword.mat');(_)

% Put median RT for each condition into summary matrix:
mdrt(i,1) = median(D.rt(D.event==1));
d (i 2) di ((2))mdrt(i,2) = median(D.rt(D.event==2));

end % i subjects

%%

'...continue to fill in ...'

% (3) C t d t d d% (3) Compute grand mean, standard error:

% Compute mean (collapsing over rows):
gm = mean(mdrt,1);gm mean(mdrt,1);

% Get standard error:
se = std(mdrt)/sqrt(size(mdrt,1));

% Save it as a .mat file in working directory:
cd(wkdir)
save rtdata mat gm sesave rtdata.mat gm se

%%

'...continue to fill in ...'

% (4) Pl t% (4) Plot:

% Open a figure, make background white:
fig = figure;fig figure;
set(fig, 'color', [1 1 1])

% Plot means:
bar(gm);

% Rescale axes:
ymax = ceil(max(gm+se));ymax = ceil(max(gm+se));
set(gca, 'ylim', [0 ymax]);

% Plot and format error bars:
ebar1 = line([1 1],[gm(1) gm(1)+se(1)]);
ebar2 = line([2 2],[gm(2) gm(2)+se(2)]);
set([ebar1 ebar2], 'linewidth', 6);

%%

'...continue to fill in ...'

% A l titl l b l t% Apply title, labels, etc.:
title('Grand Mean of Median RTs');
xlabel('Stimulus Type');
ylabel('RT + SEM (ms)');ylabel(RT + SEM (ms));
set(gca, 'xticklab', {'word', 'nonword'});

% End gracefully:
fprintf(1,'\n++ done! ++\n\n');

%%

'To run the script, type at the Command Line (or highlight and <F9>):'

demo_script_simple

'To run a version with nicer formatting, type:'

demo_script_final

'If you launched this from the presenation...'
'To return to the presentation, type:'

returnreturn

An Example Batch ScriptAn Example Batch Script

Running the batch script demo script simple m should:Running the batch script demo_script_simple.m should:

- Add several variables to the workspace, including
gm (grand mean of median RTs for 2 conditions)
se (standard error of the mean for 2 conditions)

mdrt (median RTs for each subject and condition, 15x2)

- Open a figure window and plot M+SE for each condition

An Example Batch ScriptAn Example Batch Script

The script demo script final m shows how you might improve upon the The script demo_script_final.m shows how you might improve upon the
simple batch script. Some improvements include:

'Adding (at top) some options to make the figure a bit more attractive'

%% (0) Define options:

Adding (at top) some options to make the figure a bit more attractive

% Plot format:
barcolor = [.5 .5 .5];
ebarcolor = [0 0 0];
b i 3ebarsize = 3;

plotfont = 12;

% Plot means:
bar(gm, 'facecolor', barcolor);

'These get called later in the call to bar (which plots the data):'

bar(gm, facecolor , barcolor);

set([ebar1 ebar2], 'linewidth', ebarsize, 'color', ebarcolor);

set(gca,'fontsize',plotfont);

An Example Batch ScriptAn Example Batch Script

The script demo script final m shows how you might improve upon the The script demo_script_final.m shows how you might improve upon the
simple batch script. Some improvements include:

'Which results in this slightly prettier figure:'Which results in this slightly prettier figure:

An Example Batch ScriptAn Example Batch Script

The script demo script final m shows how you might improve upon the The script demo_script_final.m shows how you might improve upon the
simple batch script. Some improvements include:

'Adding some processing options (Which summary statistic? Save? Plot?):'
% Processing options:
plotvar = 'median'; % 'median', 'mean', 'trim<N>' (N%-trimmed mean)
dosave = 0; % save grandmean data?

Adding some processing options (Which summary statistic? Save? Plot?):

g
doplot = 1; % plot grandmean data?

'And some data options...'

% Data options:
conds = [1 2];
condlabs = {'word', 'nonword'};
Ne ents [240 240]

This loop is more flexible and more
Nevents = [240 240];

% Loop over conditions

'... which get looped over later'

p
powerful than typing out the same
command for each condition

In demo_script_simple.m, we had:p
for j = 1:length(conds)

rt = D.rt(D.event==conds(j));
' ... '

mdrt(i,1) = median(D.rt(D.event==1));
mdrt(i,2) = median(D.rt(D.event==2));

But what if we want to add more conditions?

end % j in conds
' ... '

* Better yet, vector/matrix operations
are more efficient than loops!

An Example FunctionAn Example Function

At some point you may find you’re often typing out the same formula or At some point, you may find you re often typing out the same formula or
set of commands. This is annoying… and inefficient!

For example: In our script we had to compute standard error by hand:For example: In our script, we had to compute standard error by hand:

% Get standard error:
se = std(mdrt)/sqrt(size(mdrt,1));()/ q ((,));

By contrast, we don’t compute the mean by hand (sum elements/number
of elements), we just call the function mean.of elements), we just call the function mean.

S l t’ t t d d f tiSo let’s create a standard error function.

An Example FunctionAn Example Function

First what does a function look like?First … what does a function look like?

To look at a function’s contents, you can:

edit mean % open the function's m-file in Matlab Editor

type mean % dump the function's contents to screenyp p

which mean % find the function's m-file

unix(sprintf('nedit %s',which('mean'))); % edit in another editor

The main elements of a function are … (next slide)

function y = mean(x,dim)

%MEAN Average or mean value.

function call: function [out] = fname(in)
e.g., function y = mean(x,dim)

% For vectors, MEAN(X) is the mean value of the elements in X. For
% matrices, MEAN(X) is a row vector containing the mean value of
% each column. For N-D arrays, MEAN(X) is the mean value of the
% elements along the first non-singleton dimension of X.
%%
% MEAN(X,DIM) takes the mean along the dimension DIM of X.
%
% Example: If X = [0 1 2
% 3 4 5]

Description

-will display when % 3 4 5]
%
% then mean(X,1) is [1.5 2.5 3.5] and mean(X,2) is [1
% 4]
%

p y
'help' is called.

-useful to include
examples

% Class support for input X:
% float: double, single
%
% See also MEDIAN, STD, MIN, MAX, VAR, COV, MODE.

examples

% Copyright 1984-2005 The MathWorks, Inc.
% $Revision: 5.17.4.3 $ $Date: 2005/05/31 16:30:46 $

if i 1

Author info

if nargin==1,
% Determine which dimension SUM will use
dim = min(find(size(x)~=1));
if isempty(dim), dim = 1; end

Contents of
y = sum(x)/size(x,dim);

else
y = sum(x,dim)/size(x,dim);

end

Contents of
function

e d

An Example FunctionAn Example Function
So, have a crack at a standard error function, sem:

Give it a unique
 fi t tfunction y = sem(x)

% Computes standard error (standard deviation divided by
% square root of N) of a vector.

name; first try:
which sem

Describe it% square root of N) of a vector.
%
% by Jason Taylor (18/11/2008)
% note: should be modified to handle matrices
%

Take credit/blame

Note modifications,
li i i b%

% Check that input is a vector:
if nargin~=1
h l

limitations, bugs

Check for proper
input (here must be help sem

error('No input!')
elseif sum(size(x)>1)>1
help sem

input (here must be
a vector)

error('Input must be a vector!')
end

% Compute SEM:% Compute SEM:
y = std(x)/sqrt(length(x));

return

Do it!

Save in your path (e.g., /home/<user>/matlab/sem.m)
(see sem.m in /imaging/jt03/demo/scripts)

HELP?!
(where to find it)

Obviously:
help <funcname>

For pretty, hypertext, browser-based help:
doc <funcname>doc <funcname>

Look at the function!
edit <funcname>edit <funcname>
type <funcname>

Online: Matlab Central:
http://www.mathworks.com/matlabcentral/

And the user file exchange:
htt // th k / tl b t l/fil h /http://www.mathworks.com/matlabcentral/fileexchange/

On the imaging wiki:
http://imaging mrc-cbu cam ac uk/imaging/LearningMatlabhttp://imaging.mrc-cbu.cam.ac.uk/imaging/LearningMatlab

Email lists (e.g., imagers+, imagerstech)

