Cognition and
MRC Brain Sciences Unit

Visualising data using
MATLAB

Lydia Barnes
MRC Cognition and Brain Sciences Unit
8th November 2019

(slides from Sneha Shashidhara and Kate Storrs!)

Good practice for plotting

How not to use MATLAB to visualise data

2

= - \A0PEA- G 08 o@
c10 £ 2 Command Window Command Window ST [et —
v Axes (no title)

A - = . fi >> subjectl = [2 >> plot(1:11,subjectl) Al
1 subjectl subject? subjectd 3 == .
: : . : 1 5
4 1 2] 3 §
g ,E E g : ...type in
8 6 a 4 6 command ’
wol 7 line 2
3 : : : ; instructions L L
4] fo I o
Type data into ...copy- plot...)
Excel... paste
Into ...fiddle with plot using
Matlab... interactive plotting
interface until
satisfied.

What’s wrong with this?

Good practice: help your future self

e Assume you will forget everything!

* Comment
* Intro: %this script was made to...
* Brief note on each line or chunk: %load the data, %reformat the plot...

e Structure the code
 clear your workspace
* set parameters
* load data
* then make plots...

* Move from concrete to flexible
e function [out] = makeMePlots(dataDirectory,plotDirectory,includePValues)

Good practice: make your process
transparent

 What is Open Science?
* Reporting what you’ve done
* Sharing every step

* Why share scripts?
* Limited room for explanation in a Methods section
 Scripts hold all the detail you need!

* Reproduceable plotting
* Script everything — including loading the data

e Comment everything
* Name and contact details
e Background on the data at the top of the script, or in a ‘README’ in the script’s folder

Good practice: some resources

‘Good enough practices in scientific computing’, Wilson et al. 2017
‘Everything is f-ed’ open science syllabus, Sanjay Srivastava (@hardsci)

Starting a script

Starting a script: exercise

* open a new script

* save it
* meaningful location, meaningful name...
 avoid clashing with built-in function names (mean, max, plot...)

* intro

e your info
e what will this script do?

Starting a script: tips

* some safety checks

* clean up your working
environment to prevent clashes

* prepare for errors

clc; close all; clear;

dbstop if error;

Starting a script: example

1%lydia barnes, 20191107
%semail: lydiabarnes@l@gmail.com
%sadapted from sneha shashidhara, 20181025

%this script contains example code for an introductory MATLAB visulisation
%scourse held at the MRC CBU, 08 Nov 2019.

%clear the command window, figures, and workspace
clc; close all; clear;

%in case of errors, make sure we can pause to see what went wrong
-dbstop if error

Scatter plots

Scatter plot: exercise

* make (or load) the data
* make y relative to x
* “figure”
e add to your script and run it!

* explore the scatter function

* “help scatter” or “doc scatter” in
the command window

* plot
* “scatter(x,y)”

e “Isline”

x = linspace(0,1,100);
y = x + 0.1*rand(1,100);

Scatter plot: example

%% scatter plot

%make some example data (or load your own data here)
x = linspace(0,1,100); %go from @ to 1 in 100 steps
y = X + 0.1krand(1,100); %copy x, then modify it by some random values between @ and .1

%make an empty figure
figure

%—>what does 'scatter' take as its first two inputs?

%splot!
scatter(x,y);

%add a least-squares fit line
lsline;

%—>clear the plot, workspace, and command window

Line plots

Line plot: exercise

* make (or load) the data x = linspace(0,360,100);
 we’ll use the sine and cosine of y = sind(x);
the same data vector z = cosd(x);
e ‘figure’

e explore the ‘plot’ function
* “help plot”

* plot
* plot(x,y)

Line plot: tips

e store the figure information
* look inside the handle. what are
its properties?
* make variables for different
colours
* make black
» define your own three colours...

h = figure;

red=[1 0 0];
green=[010];
blue=[0 0 1];
black=[0 0 0O];

Line plot: tips

e store the flgu re information Cajigﬁluere; %open a figure, and store a ‘handle’ toitina

* look inside the handle. what are its
properties?

* make variables for different colours 4-11 0.

* make black green=[0 1 0];
* define your own three colours... blue=[0 0 1];
* plot(x,y) again, specifying the black=[0 0 0];
colour

 Name-Value pairs
* go back to “help plot” if you need to!

Line plot: example

%% line plot

%make some example data

= linspace(0,360,100); %0:360 in 100 steps
= sind(x);

cosd(x);

N < X

%set your colours. MATLAB plots expect colours in a vector of three values
%between @ and 1, indicating red, green, and blue intensities

red=[1 0 0];

green=[0 1 0];

blue=[0 0 1];

black=[0 0 0];

white=[1 1 1];

%—>choose your own three colours! ie purple = [.5 0 .5]...

%make an empty figure. this time, store a 'handle' to the figure
h = figure;
%—>1ook at h to see what 'properties' a figure automatically has

%plot!
plot(x,y, 'Color’',red)

Line plot: exercise

* add another plot
* “hold on” under first plotting command
* use x and z data variables to make another line
 give this line a different colour

e add labels

 try out “xlabel”, “ylabel”, and “title”

n u

» explore “box”, “axis”, and “legend” commands to make plot look
‘publishable’...

* save with “saveas” and the figure handle
* see if you can work out how to save it as a jpeg!

Line plot: example

%smake an empty figure. this time, store a 'handle' to the figure
h = figure;
%—>look at h to see what 'properties' a figure automatically has

%splot!
plot(x,y, 'Color',red)

%'hold' the plot so that the next plot commands layer over the top of this
%sone
hold on

%make some fresh data
plot(x,z, 'Color',blue);

%describe the plot contents

title('trigonometry', 'FontSize',20);

xlabel('angle in degrees');

ylabel('trig functions');

legend('sine', 'cosine', 'Location’', 'best'); %put a legend where it fits best
legend boxoff

%because we have a handle for the figure, we can ask matlab to save
severything from that handle to an image file
- saveas(h, 'trigLinePlot"');

Bar plots

Bar plots: basics (exercise)

* make (or load) some data x = randi(10,[10,3]);

e get the group means of xandy
for each task

e store the group meansin a
variable

e 2 conditions (rows), 3 tasks
(columns)

* estimate the standard error of
each mean (standard
deviation/square root of n)

e “std” and “sqrt”

y = x + randi(3,[10,3]);

Bar plots: basics (example)

%% barplots

%smake some example data
assume we've collected reaction times from 10 participants for 3
different tasks, each of which has an easy and a difficult version.
we'll organise our data into one subjects x tasks matrix for easy, and
another subjects x tasks matrix for the hard condition:
= randi(10, [10,3]); %x = easy. get integers between @ and 10, for 10 subjects (rows) and 3 tasks (columns)
= X + randi(3,[10,3]); %y = hard. assume this evoked slightly larger responses than the easy condition.
get the group average of each condition
ata = [mean(x,1); mean(y,1)];
estimate the standard error (the standard deviation/sq root of n)
% of the group means
errorData = [std(x,1)/sqrt(size(x,1)); std(y,1)/sqrt(size(y,1))];
%—> view your data matrices

of of of of

o Q=< X

Bar plots: plot properties (exercise)

* h =figure;
e explore the “bar” function
* plot

* create a handle for the plot b = bar(data);
» explore the plot’s properties

e hold on

* modify the bar colours with the
plot handle and “set”

e add a title and axis labels

Bar plots: plot properties (example)

%make a new figure
h = figure; %store the figure handle in h

%splot

b = bar(data); %store the plot handle in b

hold on %make sure subsequent plotting commands apply to this figure
%->1look at b's properties by typing b into the command window

%—>what properties are in h (the figure handle) vs b (the plot handle)?

%set the colours for each task
set(b(1), 'FaceColor',blue);
set(b(2), 'FaceColor',green);
set(b(3), 'FaceColor', red);

%label your figure and axes
title('reaction times across three cognitive tasks (n=10)', 'FontSize',15);
xlabel('conditions', 'FontSize',15);

ylabel('RT (s)','FontSize",15);

Bar plot: axis properties (exercise)

» get the axis handle ax = gca;

 compare the properties in the
figure, plot, and axis handles

* change the x-axis ticks and labels
* hint: use ‘set’ and the axis handle

Bar plot: axis properties (example)

%get the axis handle
ax=gca;
%—>1look at the axis handle

%—>what properties does the axis (ax) have? compare to the figure
%sproperties in h

%smodify the axis properties
set(ax, 'XTick', [1, 2]) %only put ticks at 1 and 2
set(ax, 'XTickLabel',{'easy"', 'hard'}) %label those ticks with our conditions

Bar plots: error bars (exercise)

* find the location of each bar on ~ X=[1-(2/9) 11+(2/9); 2-(2/9) 2 2+(2/9)1;
the x-axis and store it in a
variable

* use “errorbar” to plot the
standard error of the means

* hint: use the errors you calculated
earlier

Bar plots: error bars (example)

%add error bars

record where the centre of each bar is along the x-axis

[1-(2/9) 1 1+(2/9); 2-(2/9) 2 2+(2/9)];

use the errorbar function to plot the standard errors you calculated
earlier. inputs are the x—-axis positions, y-axis positions (our group
means), and the standard errors for each bar

(by default, errorbar plots bars 2xthe standard error in either
direction)

eb = errorbar(X,data,errorData,'."', 'Color',black);

%-> use name-value pairs to set the width of the errorbars

set(eb, 'LineWidth',1.5)

of X of
1

o of of o°

Bar plots: reporting stats (exercise)

* find the highest value on the plot
* without looking at the plot!

* “line” and “text”
* plot a line from the easy to the hard condition along the top of the plot

* put text in the centre showing a p-value
* make a handle to the text
* modify the text size and vertical alignment

° llylimﬂ
 adjust the y-axis limits to give the p-value more space

Bar plots: reporting stats (example)

p=.01; %make a p-value

%plot a line indicating what we compared, along with the p-value

% calculate the highest value on the plot: the largest group mean plus
% its error bar

ymax = max(max(data)) + max(max(errorData));

% plot a line at that height (ie the top of the plot), stretching between
% our two conditions

line([1 2], [ymax ymax], 'linewidth',2,'Color',black);

% add text for our p-value

t=text(1.5,ymax,sprintf('p = %.2f',p));

%—>change Vertical Alignment so that the line and text don't overlap
%->adjust the font size

t.FontSize=15;

t.HorizontalAlignment="'center’;

t.VerticalAlignment="bottom’;

%—> use ylim to adjust the y-axis limits to make room for the p-value
ylim([@ ymax+1])

Subplots

Subplots (exercise)

e explore the “subplot” function

* make a figure with subplots
* 1 per person in our bar plot dataset
* 2 rows, 5 columns

* loop through the subjects

 for each person, plot their 3 tasks and 2 conditions as you did for the
group average bar plots

* give each subplot a title
* calculate the group range and use it to set the y-axis limits

Subplots (example)

- end

%loop through each subject
I for subjid = 1l:nsubjects %as the index increases from 1 to the number of subjects

%select this subject's data from our easy and hard condition matrices
data = [x(subjid,:); y(subjid,:)1; %row 1 is from x, row 2 is [from y

%—>use help look at the first three inputs we can give the subplot function

%make a subplot for this person, and store its handle in the empty axis| array
%we made earlier

% subplot breaks a figure into parts. its first two inputs dictate

how many rows and columns of subplots you want: in our case, 2

rows, 5 columns. the third input selects which subplot you want to

work with (moving left-right, top-bottom, as though you're reading)
ax(subjid) = subplot(2,5,subjid);

a® o o

%snow that we've selected a subplot, plot this subject's data there
b=bar(data);

%—>use your favourite colours for the three bars

%label the plot with this subject's ID
title(sprintf('subject %d',subjid));

%label the full plot
suptitle('all subjects');

Just for fun

%% matrices

%make some data

x=randn(5,5); %fill a 5x5 matrix with random values
%->when would we want to plot full matrices?

%make a new plot
figure

imagesc(x); %treat the matrix as an image, giving each value a color based on its magnitude
-colorbar; %show the color scale

