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Good practice for plotting



How not to use MATLAB to visualise data
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What’s wrong with this?



Good practice: help your future self

e Assume you will forget everything!

* Comment
* Intro: %this script was made to...
* Brief note on each line or chunk: %load the data, %reformat the plot...

e Structure the code
 clear your workspace
* set parameters
* load data
* then make plots...

* Move from concrete to flexible
e function [out] = makeMePlots(dataDirectory,plotDirectory,includePValues)



Good practice: make your process
transparent

 What is Open Science?
* Reporting what you’ve done
* Sharing every step

* Why share scripts?
* Limited room for explanation in a Methods section
 Scripts hold all the detail you need!

* Reproduceable plotting
* Script everything — including loading the data

e Comment everything
* Name and contact details
e Background on the data at the top of the script, or in a ‘README’ in the script’s folder



Good practice: some resources

‘Good enough practices in scientific computing’, Wilson et al. 2017
‘Everything is f-ed’ open science syllabus, Sanjay Srivastava (@hardsci)



Starting a script



Starting a script: exercise

* open a new script

* save it
* meaningful location, meaningful name...
 avoid clashing with built-in function names (mean, max, plot...)

* intro

e your info
e what will this script do?



Starting a script: tips

* some safety checks

* clean up your working
environment to prevent clashes

* prepare for errors

clc; close all; clear;

dbstop if error;



Starting a script: example

1%lydia barnes, 20191107
%semail: lydiabarnes@l@gmail.com
%sadapted from sneha shashidhara, 20181025

%this script contains example code for an introductory MATLAB visulisation
%scourse held at the MRC CBU, 08 Nov 2019.

%clear the command window, figures, and workspace
clc; close all; clear;

%in case of errors, make sure we can pause to see what went wrong
-dbstop if error




Scatter plots



Scatter plot: exercise

* make (or load) the data
* make y relative to x
* “figure”
e add to your script and run it!

* explore the scatter function

* “help scatter” or “doc scatter” in
the command window

* plot
* “scatter(x,y)”

e “Isline”

x = linspace(0,1,100);
y = x + 0.1*rand(1,100);



Scatter plot: example

%% scatter plot

%make some example data (or load your own data here)
x = linspace(0,1,100); %go from @ to 1 in 100 steps
y = X + 0.1krand(1,100); %copy x, then modify it by some random values between @ and .1

%make an empty figure
figure

%—>what does 'scatter' take as its first two inputs?

%splot!
scatter(x,y);

%add a least-squares fit line
lsline;

%—>clear the plot, workspace, and command window



Line plots



Line plot: exercise

* make (or load) the data x = linspace(0,360,100);
 we’ll use the sine and cosine of y = sind(x);
the same data vector z = cosd(x);
e ‘figure’

e explore the ‘plot’ function
* “help plot”

* plot
* plot(x,y)



Line plot: tips

e store the figure information
* look inside the handle. what are
its properties?
* make variables for different
colours
* make black
» define your own three colours...

h = figure;

red=[1 0 0];
green=[010];
blue=[0 0 1];
black=[0 0 0O];



Line plot: tips

e store the flgu re information Cajigﬁluere; %open a figure, and store a ‘handle’ toitina

* look inside the handle. what are its
properties?

* make variables for different colours 4-11 0.

* make black green=[0 1 0];
* define your own three colours... blue=[0 0 1];
* plot(x,y) again, specifying the black=[0 0 0];
colour

 Name-Value pairs
* go back to “help plot” if you need to!



Line plot: example

%% line plot

%make some example data

= linspace(0,360,100); %0:360 in 100 steps
= sind(x);

cosd(x);

N < X

%set your colours. MATLAB plots expect colours in a vector of three values
%between @ and 1, indicating red, green, and blue intensities

red=[1 0 0];

green=[0 1 0];

blue=[0 0 1];

black=[0 0 0];

white=[1 1 1];

%—>choose your own three colours! ie purple = [.5 0 .5]...

%make an empty figure. this time, store a 'handle' to the figure
h = figure;
%—>1ook at h to see what 'properties' a figure automatically has

%plot!
plot(x,y, 'Color’',red)



Line plot: exercise

* add another plot
* “hold on” under first plotting command
* use x and z data variables to make another line
 give this line a different colour

e add labels

 try out “xlabel”, “ylabel”, and “title”

n u

» explore “box”, “axis”, and “legend” commands to make plot look
‘publishable’...

* save with “saveas” and the figure handle
* see if you can work out how to save it as a jpeg!



Line plot: example

%smake an empty figure. this time, store a 'handle' to the figure
h = figure;
%—>look at h to see what 'properties' a figure automatically has

%splot!
plot(x,y, 'Color',red)

%'hold' the plot so that the next plot commands layer over the top of this
%sone
hold on

%make some fresh data
plot(x,z, 'Color',blue);

%describe the plot contents

title('trigonometry', 'FontSize',20);

xlabel('angle in degrees');

ylabel('trig functions');

legend('sine', 'cosine', 'Location’', 'best'); %put a legend where it fits best
legend boxoff

%because we have a handle for the figure, we can ask matlab to save
severything from that handle to an image file
- saveas(h, 'trigLinePlot"');




Bar plots



Bar plots: basics (exercise)

* make (or load) some data x = randi(10,[10,3]);

e get the group means of xandy
for each task

e store the group meansin a
variable

e 2 conditions (rows), 3 tasks
(columns)

* estimate the standard error of
each mean (standard
deviation/square root of n)

e “std” and “sqrt”

y = x + randi(3,[10,3]);



Bar plots: basics (example)

%% barplots

%smake some example data
assume we've collected reaction times from 10 participants for 3
different tasks, each of which has an easy and a difficult version.
we'll organise our data into one subjects x tasks matrix for easy, and
another subjects x tasks matrix for the hard condition:
= randi(10, [10,3]); %x = easy. get integers between @ and 10, for 10 subjects (rows) and 3 tasks (columns)
= X + randi(3,[10,3]); %y = hard. assume this evoked slightly larger responses than the easy condition.
get the group average of each condition
ata = [mean(x,1); mean(y,1)];
estimate the standard error (the standard deviation/sq root of n)
% of the group means
errorData = [std(x,1)/sqrt(size(x,1)); std(y,1)/sqrt(size(y,1))];
%—> view your data matrices
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Bar plots: plot properties (exercise)

* h =figure;
e explore the “bar” function
* plot

* create a handle for the plot b = bar(data);
» explore the plot’s properties

e hold on

* modify the bar colours with the
plot handle and “set”

e add a title and axis labels



Bar plots: plot properties (example)

%make a new figure
h = figure; %store the figure handle in h

%splot

b = bar(data); %store the plot handle in b

hold on %make sure subsequent plotting commands apply to this figure
%->1look at b's properties by typing b into the command window

%—>what properties are in h (the figure handle) vs b (the plot handle)?

%set the colours for each task
set(b(1), 'FaceColor',blue);
set(b(2), 'FaceColor',green);
set(b(3), 'FaceColor', red);

%label your figure and axes
title('reaction times across three cognitive tasks (n=10)', 'FontSize',15);
xlabel('conditions', 'FontSize',15);

ylabel('RT (s)','FontSize",15);




Bar plot: axis properties (exercise)

» get the axis handle ax = gca;

 compare the properties in the
figure, plot, and axis handles

* change the x-axis ticks and labels
* hint: use ‘set’ and the axis handle



Bar plot: axis properties (example)

%get the axis handle
ax=gca;
%—>1look at the axis handle

%—>what properties does the axis (ax) have? compare to the figure
%sproperties in h

%smodify the axis properties
set(ax, 'XTick', [1, 2]) %only put ticks at 1 and 2
set(ax, 'XTickLabel',{'easy"', 'hard'}) %label those ticks with our conditions



Bar plots: error bars (exercise)

* find the location of each bar on ~ X=[1-(2/9) 11+(2/9); 2-(2/9) 2 2+(2/9)1;
the x-axis and store it in a
variable

* use “errorbar” to plot the
standard error of the means

* hint: use the errors you calculated
earlier



Bar plots: error bars (example)

%add error bars

record where the centre of each bar is along the x-axis

[1-(2/9) 1 1+(2/9); 2-(2/9) 2 2+(2/9)];

use the errorbar function to plot the standard errors you calculated
earlier. inputs are the x—-axis positions, y-axis positions (our group
means), and the standard errors for each bar

(by default, errorbar plots bars 2xthe standard error in either
direction)

eb = errorbar(X,data,errorData,'."', 'Color',black);

%-> use name-value pairs to set the width of the errorbars

set(eb, 'LineWidth',1.5)

of X of
1
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Bar plots: reporting stats (exercise)

* find the highest value on the plot
* without looking at the plot!

* “line” and “text”
* plot a line from the easy to the hard condition along the top of the plot

* put text in the centre showing a p-value
* make a handle to the text
* modify the text size and vertical alignment

° llylimﬂ
 adjust the y-axis limits to give the p-value more space



Bar plots: reporting stats (example)

p=.01; %make a p-value

%plot a line indicating what we compared, along with the p-value

% calculate the highest value on the plot: the largest group mean plus
% its error bar

ymax = max(max(data)) + max(max(errorData));

% plot a line at that height (ie the top of the plot), stretching between
% our two conditions

line([1 2], [ymax ymax], 'linewidth',2,'Color',black);

% add text for our p-value

t=text(1.5,ymax,sprintf('p = %.2f',p));

%—>change Vertical Alignment so that the line and text don't overlap
%->adjust the font size

t.FontSize=15;

t.HorizontalAlignment="'center’;

t.VerticalAlignment="bottom’;

%—> use ylim to adjust the y-axis limits to make room for the p-value
ylim([@ ymax+1])



Subplots



Subplots (exercise)

e explore the “subplot” function

* make a figure with subplots
* 1 per person in our bar plot dataset
* 2 rows, 5 columns

* loop through the subjects

 for each person, plot their 3 tasks and 2 conditions as you did for the
group average bar plots

* give each subplot a title
* calculate the group range and use it to set the y-axis limits



Subplots (example)

- end

%loop through each subject
I for subjid = 1l:nsubjects %as the index increases from 1 to the number of subjects

%select this subject's data from our easy and hard condition matrices
data = [x(subjid,:); y(subjid,:)1; %row 1 is from x, row 2 is [from y

%—>use help look at the first three inputs we can give the subplot function

%make a subplot for this person, and store its handle in the empty axis| array
%we made earlier

% subplot breaks a figure into parts. its first two inputs dictate

how many rows and columns of subplots you want: in our case, 2

rows, 5 columns. the third input selects which subplot you want to

work with (moving left-right, top-bottom, as though you're reading)
ax(subjid) = subplot(2,5,subjid);

a® o o

%snow that we've selected a subplot, plot this subject's data there
b=bar(data);

%—>use your favourite colours for the three bars

%label the plot with this subject's ID
title(sprintf('subject %d',subjid));

%label the full plot
suptitle('all subjects');



Just for fun

%% matrices

%make some data

x=randn(5,5); %fill a 5x5 matrix with random values
%->when would we want to plot full matrices?

%make a new plot
figure

imagesc(x); %treat the matrix as an image, giving each value a color based on its magnitude
-colorbar; %show the color scale




