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Today

• How to fit fMRI responses with a general linear 
model 

• Workshop: Building an fMRI model by hand in 
Matlab 

• Implications for experimental design
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The general linear model
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A typical fMRI task

0 50 100 150 200 250
160

180

200

si
gn

al
 in

te
ns

ity

0 50 100 150 200 250
0

0.5

1

in
di

ca
to

r

 

 
face
house

0 50 100 150 200 250
−2

0

2

co
nv

ol
ve

d 
w

ith
 H

R
F

time (scans)

• Face blocks appeared at volumes 8, 88, 168, 200 

• House blocks at volumes 24, 120, 152, 216 

• All blocks lasted 8 volumes



A typical fMRI task
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But fMRI responses are not instantaneous…



The canonical SPM HRF
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• response to a zero duration stimulus at 
time 0 

• time to peak: 5-6s
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The canonical SPM HRF
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A typical fMRI task
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The convolved design 
matrix



Trend removal



What weights should we use to obtain a fitted timecourse that is 
as close as possible to the data (ie, smallest squared deviation)?





Contrast vectors 
are basically just 
a convenient 
way to average 
or subtract 
parameter 
estimates

b * [-1 1 0 0 0 0 0 0]’ = 3.2 = 8.0-4.8
b * [.25 .25 .25 .25 0 0 0 0]’ = 5.8 = mean(b_regressors)



Serial autocorrelation
• fMRI data residuals are not independent and identically distributed (iid) 

• Why not? Breathing, heartbeat cycle, unmodeled neuronal activity 
(remember, the BOLD response is temporally smooth) 

• This invalidates the error term, which is used for parametric stats 
inference (T tests, standard errors etc, p values) 

• SPM attempts to correct this by estimating (1st-order) autocorrelation and 
whitening data and design by this 

• This works to some extent, but not perfectly (Eklund et al., 2012, 
NeuroImage) - if your analysis depends on single-participant parametric 
p values you may want to read this ref and consider alternative 
(permutation test) approaches 

• But for the typical group analysis case, problems with AR modelling are 
not going to bias your inferences (more on this next time) 
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Parametric 
modulators

• Encode modulations of stimulus responses by continuous variables 
• SPM solution is one regressor for the stimulus effect and another mean-

centered regressor for each modulator on that response 
• Why not just the modulator? Because we don’t want to assume zero response 

when modulator=0 
• Typical applications: Reinforcement learning (Dolan, O’Doherty), visual 

coding (Huth/Gallant, Kay), ‘carry-over’ fMRI adaptation (Aguirre), fancy grid 
cell stuff (Behrens)



Orthogonalisation
• If we compare the models Y = X1 and Y = 

X1 + X2, the beta(X1) will explain more 
variance when it is the only predictor in the 
model 
• We can think of beta(X1) as being 

‘adjusted for X2’ when X2 is in the model 
• What about if we orthogonalise X2 with 

respect to X1, ie, we regress out the 
contribution of X1 from X2? 
• The X2 predictor will change - but X2’s 

parameter estimates will stay exactly the 
same (counterintuitive but true!) 

• The X1 predictor stays the same - but 
beta(X1) will change, because all the 
shared variance now goes to X1 

• In effect, beta(X1) from the model Y = X1 + 
X2(orth(X1)) will be similar to the model Y = 
X1, but with less residual error 
• Same beta but less error = ‘better’ stats Mumford et al., 2015, PLoS ONE
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When orthogonalisation makes sense

Mumford et al., 2015, PLoS ONE

• We want the main regressor to reflect the mean response to the 
stimulus, and the modulators to reflect deviations from that mean 

• Solution: orthogonalize the two modulators (‘intensity’, ‘RT’) with 
respect to the main task regressor (‘unmodulated’). Changes 
‘unmodulated’ estimates, but not the modulator estimates 

• What happens if we don’t do this? unmodulated response is 
response when intensity=0, RT=0. Hard to interpret.



When orthogonalisation 
make sense Careful - colour scheme changes! 

• If you want the ‘correct’ case in SPM you 
will have to hand code the modulators (with 
appropriate orth) and add them (disabling 
SPM’s own orth - only available in SPM12). 

• Or fit the model twice, taking the second 
modulator each time 

• Or switch to FSL…

Mumford et al., 2015, PLoS ONE



Workshop time



Setup (if running in your own 
time)

• Open a terminal: 
• cd /imaging/[yourusername] 
• scp -r /imaging/jc01/practicals/firstlevelmodel ./ 
• cd firstlevelmodel 
• matlab_r2012b 

• In Matlab: 
• edit firstlevelpractical 
• other code to explore: visualisedesign.m, 

loadfmridata.m, firstlevelpractical_exampleanswer.m



Break



Designing fMRI experiments

Given what we now know about the assumed HRF 
shape and the noise model, what kind of design is 
most efficient for detecting the hypothesised 
effect? 

Experimental design has a huge effect on detection 
power in fMRI — this can make or break your study



Collinearity (1)
• Dependencies between convolved regressors increases the 

variance of parameter estimates 
• NB, does not bias the fit - but can make it almost impossible 

to detect effects (e.g. the single-participant betas that go into 
group analysis will be highly variable) 

• Big problem in fMRI, since convolution with HRF introduces 
dependencies between neighbouring events (e.g., encoding 
and recall phase in memory experiment) 

• SPM outputs collinearity estimates (see above - basically 
predictor correlation matrix). Useful for finding pairs of 
dependent conditions. But a bit late to find this out at model fit 
stage!



Collinearity (2)
• Collinearity can also arise over sets of regressors - consider using 

variance inflation factor (VIF) to test for this at experimental design 
stage 

• VIF = 1 / (1-R2) where R2 comes from using all regressors but one 
to predict the final regressor 

• Typical values: 
• VIF=1 for completely orthogonal designs (zero correlation 

between prediction and left-out regressor) 
• VIF=Inf for rank deficient designs (perfect correlation between 

prediction and left-out regressor)  
• By convention, VIF>5 indicates a problem (but lower is better, 

always)



… Can we fix collinearity by 
orthogonalizing regressors?

• No.



Typical fMRI designs

Very efficient Very inefficient



Rules of thumb for fMRI design
1. Randomise trial order for each run to minimise collinearity 
2. Cluster trials (pseudorandom event-related design or just 
block) to keep signal in low frequency band (the HRF 
convolution basically low-pass filters the regressor)  

3. Don’t put conditions you want to compare too far apart 
(>60s) (the de-trend high-pass filters the regressor) 

4. Keep the number of conditions as small as possible to 
make the above easier (and to enable shorter runs) 

5. For differential effects (ie, what you usually care about), 
fixed ISI works best 

6. For much more on this, see Rik’s SPM lectures, or CBU 
imaging wiki entry on design efficiency



Useful references
• Rik’s design efficiency wiki: http://imaging.mrc-

cbu.cam.ac.uk/imaging/DesignEfficiency 

• Jeanette Mumford’s brain stats blog: 
mumfordbrainstats.tumblr.com (see also facebook group) 

• The SPM mailing list: https://www.jiscmail.ac.uk/lists/
SPM.html (vast searchable archive) 

• Kendrick Kay’s course on Statistics and Data Analysis in 
MATLAB: http://kendrickkay.net/psych5007/ (if you want 
to roll your own GLM)

http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency
http://mumfordbrainstats.tumblr.com
https://www.jiscmail.ac.uk/lists/SPM.html
http://kendrickkay.net/psych5007/

