# M/EEG Connectivity using Dynamic Causal Modelling (DCM) Part II – Group DCM

Rik Henson, Pranay Yadav

COGNESTIC Summer School, Sep 2022

https://www.mrc-cbu.cam.ac.uk/conferences/cognestic2022/

#### **GCM Specification**



Single 'Full' DCM

#### **GCM Specification**



#### **GCM Specification**



#### **GCM Specification**







## Search all nested models with Greedy-BMR

## 'Full' Model









**Fitted** Full GCM



## Faces Faces Switch 'off' another connection EVC FFA Faces

Full

Nested<sub>1</sub>



Continue this process for each connection (=parameter)



Full Nested<sub>1</sub> Nested<sub>2</sub>

Continue this process for each connection (=parameter)

Generate all possible 'Nested' versions of 'Full' model



Full Nested<sub>1</sub> Nested<sub>2</sub> Nested<sub>3</sub> Nested<sub>4</sub> Nested<sub>5</sub> Nested<sub>6</sub> Nested<sub>7</sub> Nested<sub>8</sub> Nested<sub>9</sub> Nested<sub>10</sub> Nested<sub>11</sub>



Generate all possible 'Nested' versions of 'Full' model (=model space)

Infer parameters of 'Nested' models (=model reduction, BMR)



Full Nested<sub>1</sub> Nested<sub>2</sub> Nested<sub>3</sub> Nested<sub>4</sub> Nested<sub>5</sub> Nested<sub>6</sub> Nested<sub>7</sub> Nested<sub>8</sub> Nested<sub>9</sub> Nested<sub>10</sub> Nested<sub>11</sub>

Infer parameters of 'Nested' models (=model reduction, BMR)



Full Nested<sub>1</sub> Nested<sub>2</sub> Nested<sub>3</sub> Nested<sub>4</sub> Nested<sub>5</sub> Nested<sub>6</sub> Nested<sub>7</sub> Nested<sub>8</sub> Nested<sub>9</sub> Nested<sub>10</sub> Nested<sub>11</sub>

Infer parameters of 'Nested' models (=model reduction, BMR)

Compare evidence for all models (=model comparison, BMC)

Take a weighted average of model parameters (=model averaging, BMA)
\*weighted by model evidence of each model



Infer parameters of 'Nested' models (=model reduction, BMR)

Compare evidence for all models (=model comparison, BMC)

Take a weighted average of model parameters (=model averaging, BMA) \*weighted by model evidence of each model





'Full' model
Faces modulate Forward & Backward connections



'Full' model
Faces modulate Forward & Backward connections



'No-Forward' model
Faces modulate only Backward connections



'Full' model
Faces modulate Forward & Backward connections



'No-Forward' model
Faces modulate only Backward connections



'No-Backward' model

Faces modulate only Forward connections



'Full' model
Faces modulate Forward & Backward connections



'No-Forward' model
Faces modulate only Backward connections



'No-Backward' model
Faces modulate only Forward connections



'Null' model
Faces modulate neither F/B connection



Compare all four models and pick 'winning' model?

'Full' model
Faces modulate Forward & Backward connections



'No-Forward' model
Faces modulate only Backward connections



'No-Backward' model
Faces modulate only Forward connections



'Null' model
Faces modulate neither F/B connection



Self-connections are modulated in addition to between-region connections

'Full' model
Faces modulate Forward & Backward connections

Faces
Faces
Visual Input

'No-Forward' model
Faces modulate only Backward connections



'No-Backward' model
Faces modulate only Forward connections



'Null' model
Faces modulate neither F/B connection



Self-connections may not be modulated...

- 1. Whether forward connections are modulated
- 2. Whether backward connections are modulated
- 3. Whether lateral connections are modulated
- 4. Whether self-connections are modulated

- 1. Whether forward connections are modulated: yes / no
- 2. Whether backward connections are modulated: yes / no
- 3. Whether lateral connections are modulated: yes / no
- 4. Whether self-connections are modulated: yes / no

- 1. Whether forward connections are modulated: yes / no
- 2. Whether backward connections are modulated: yes / no
- 3. Whether lateral connections are modulated: yes / no
- 4. Whether self-connections are modulated: yes / no

Total number of models:  $2^4 = 16$ 

- 1. Whether forward connections are modulated: yes / no
- 2. Whether backward connections are modulated: yes / no
- 3. Whether lateral connections are modulated: yes / no
- 4. Whether self-connections are modulated: yes / no

Total number of models:  $2^4 = 16$ 

#### \*Note:

- Both (bilateral) forward connections are grouped together
- Both (bilateral) backward connections are grouped together
- Both lateral connections are grouped together
- All three self-connections are grouped together



## Model Space







Model Space

F+B+L No S





Model Space











Model Space

F+B No S No L







bVC

rFFA IFFA







F+L No B No S





F+S No B No L





F No B No S No L



#### bVC IFFA rFFA bVC IFFA rFFA bVC IFFA rFFA bVC IFFA rFFA bVC bVC bVC bVC rFFA IFFA IFFA rFFA IFFA rFFA IFFA rFFA Model 02 Model 03 Model 01 Model 04 bVC IFFA rFFA bVC IFFA rFFA bVC IFFA rFFA bVC IFFA rFFA bVC bVC bVC bVC IFFA IFFA IFFA IFFA rFFA rFFA rFFA rFFA Model 05 Model 06 Model 07 Model 08

















Partition into Families



Partition into Families



Partition into Families

Family 1
At least one
forward or backward
or lateral connection

Family 2
No
forward or backward
or lateral connection
(Only self)





Family 1
At least one
forward or backward
or lateral connection

Are **between-region** connections modulated by Faces regardless of self-connections?

Family 2
No
forward or backward
or lateral connection
(Only self)





Family 1
With
forward connections

Are **forward** connections modulated by Faces regardless of all other connections?

Family 2
Without
forward connections









Family 1
With
lateral connections

Are **lateral** connections modulated by Faces regardless of all other connections?

Family 2
Without
lateral connections











Family 1
With
self connections

Are **self** connections modulated by Faces regardless of all other connections?

Family 2
Without
self connections





#### **Define Model Space through GCM Specification**



#### **Define Model Space through GCM Specification**



'Full' DCM and reduced 'Self' DCM

#### **Define Model Space through GCM Specification**



'Full' DCM and reduced 'Self' DCM









'Full' model Faces modulate bw-region & self-connections

Faces
Faces
Faces
Visual Input

'Self' model
Faces modulate only self-connections (no bw-region)



# **BMC**Are between-region connections modulated?