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Abstract 
Dynamic Causal Modelling (DCM) is a widely used method for inferring effective connectivity from 
various kinds of neuroimaging data. This tutorial demonstrates a step-by-step walkthrough for using 
DCM to investigate group-level effective connectivity from a publicly available open-access fMRI 
dataset for face processing from 16 subjects. We illustrate a reproducible analysis pipeline that makes 
use of a hierarchical Bayesian framework called Parametric Empirical Bayes (PEB) to characterize 
inter-individual variability in neural circuitry. At the group level, we show various approaches for 
performing testing focused hypotheses on the estimated connectivity using Bayesian model comparison.
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1. Introduction 
This paper is a tutorial for Dynamic Causal Modelling (DCM) of fMRI data. DCM is a method for 
inferring effective connectivity between brain regions from neuroimaging data, and is part of the 
Statistical Parametric Mapping (SPM) free academic software (https://www.fil.ion.ucl.ac.uk/spm/), 
which is implemented in Matlab (The MathWorks Inc., 2018). We focus on basic DCM specification, 
estimation, Bayesian model reduction and Bayesian model comparison, using the recent Parametric 
Empirical Bayesian (PEB) framework for group-level inference across multiple subjects. Together with 
its companion document describing DCM of MEG data, this document extends the DCM PEB tutorial 
by Zeidman and colleagues (Zeidman, Jafarian, Corbin, et al., 2019; Zeidman, Jafarian, Seghier, et al., 
2019) to a multimodal dataset, and illustrates other features of DCM and PEB 
(https://github.com/pzeidman/dcm-peb-example). 

The dataset contains fMRI and MEG+EEG data on 16 subjects from a face-processing paradigm 
described in Wakeman & Henson (2015). The raw data in BIDS format are available on OpenNeuro 
(https://openneuro.org/datasets/ds000117). This tutorial continues a previous tutorial on the same 
dataset (Henson et al., 2019), which illustrated basic pre-processing and source localisation of 
MEG/EEG/fMRI data in SPM. Here we assume this pre-processing has already been done, though you 
can download the pre-processed data as described below. 

We describe practical steps using 1) SPM’s graphical user interface (GUI), 2) its “batch” interface for 
linear pipeline creation and finally 3) “scripting” in MATLAB for (parallelised) loops across subjects. 
We use version 12.5 of DCM in version 12 of SPM. The paper is organised into sections with a brief 
theoretical background followed by a detailed step-by-step walkthrough. The background is only brief 
because we refer to previous published papers, many of which are available from the SPM website: 
https://www.fil.ion.ucl.ac.uk/spm/doc/biblio/.  We do not provide a full tour of all the available options 
in SPM for M/EEG, which is already present in Litvak et al. (2011). Rather, we focus on the typical 
steps for group-level DCM inference using PEB. Our experience with teaching SPM is that students 
appreciate having a concrete example, which they can then adjust to their own needs.   

The steps below are also scripted in the ‘code’ directory that you can download or clone from 
https://github.com/pranaysy/MultimodalDCM. This contains two sub-directories, one for fMRI and one 
for MEG, which themselves contain two groups of files: one of these are MATLAB files derived from 
SPM’s ‘batch’ interface (filenames beginning with batch*), in which various analysis steps (batch 
‘modules’) were created by the GUI, saved and then called from loops across subjects (all within the 
‘spm_master_script_dcm_*_peb_batch.m’); the other consists of a script that implements exactly the 
same analyses, but with direct calls to underlying ‘spm*.m’ functions, bypassing SPM’s Batch interface 
(e.g., contained within the script in ‘spm_master_script_dcm_*_peb_direct.m’). 

2. The Multimodal Dataset  
The dataset comes from a paradigm in which participants saw a series of faces and phase-scrambled 
faces, and made left-right symmetry judgments to each stimulus. There were 300 unique faces and 150 
unique scrambled images. Half of the faces were famous and half non-famous, but we ignore this 
distinction in this tutorial. Each stimulus was presented for 900ms on average, followed by 2200ms on 
average. Each stimulus was repeated either immediately, or after 5-15 intervening stimuli, but again we 
ignore the effects of repetition here. Thus we only analyse two conditions: faces vs scrambled faces. 
See Lee et al. (2022) for DCM analysis of effects of repetition and recognition (familiar vs unfamiliar) 
in the fMRI data. 

To give participants a break, the fMRI experiment was split into 9 runs, with approximately equal 
numbers of each condition per run, though to avoid delayed repetition across runs, a small number of 
these trials were dropped. In addition, in order to estimate the response versus inter-stimulus baseline, 
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six periods of 20s of a fixation cross were added after a block of 9-20 trials. For more details, see 
Wakeman & Henson (2015). 

3. Background  
3.1 DCM  
DCM is a tool for inferring ‘effective connectivity’ between brain regions of interest (ROIs), based on 
explicit network models and assumptions about neural dynamics. DCM is a state-space model, 
consisting of 1) differential equations that relate changes in each latent neural variable to other variables 
in the network (depending on connections), and 2) an observation model that maps neural variables to 
the measured fMRI and M/EEG signals.  

For fMRI, the neural model is based on simple exponential decay of activity within each area, offset by 
input from other areas, as captured by a simple bilinear approximation. For MEG, the neural model is 
much more complex and contains several differential equations with multiple parameters describing 
each ROI, based on knowledge of the neurophysiology of human cortical layers. For more background 
on DCM, see David et al. (2006), Moran et al. (2013), Pereira et al. (2021).  

For fMRI, the observation model is a temporal model that maps brief changes in neural activity to the 
more dispersed BOLD impulse response (a so-called HaemoDynamic Model, HDM). For MEG, the 
observation model is a spatial model that maps certain neural variables to electrical/magnetic fields 
recorded by sensors outside the head. 

3.2 Current Network (model) 
Here we focus on 3 ROIs: left and right fusiform face areas (FFA) and bilateral early visual cortex 
(bVC). The right FFA is one of the peaks that survive correction for multiple comparisons in the group 
analysis of the contrast of faces versus scrambled faces (see Supplementary Figure A2.1 of Henson et 
al. (2019); https://www.frontiersin.org/articles/10.3389/fnins.2019.00300/full#supplementary-
material); the left FFA appears if the cluster threshold is reduced from 30 to 10 or fewer voxels. We 
could define these two ROIs by saving each of them as thresholded clusters (as in Section 3.2 of Henson 
et al., 2019), but here, for fMRI, we just define them as spheres centred on significant peaks (see Section 
4.3 below) For bVC, the centre of the sphere was just chosen manually to estimate midline early visual 
cortex. 

We connect the three ROIs as shown in Figure 1. This assumes bidirectional connections between bVC 
and FFA, and bidirectional connections between hemispheres for FFA. Together with each ROI’s 
(inhibitory) self-connection, these are the ‘A’ connections in DCM. We further assume that all of these 
fixed connections can be modulated by the presence of faces (vs scrambled faces). Finally, we will 
assume that the input (for all stimuli) enters bVC (but see Lee et al., 2022, for more nuanced treatment 
of possible inputs to the network). 
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Figure 1. The 3-node DCM used for fMRI and MEG/EEG. F = forward, B = backward, 
S = self, L = lateral (note F, B and L have different properties in DCM for MEG/EEG 
only). VC = Visual Cortex; FFA = Fusiform Face Area. 
 

DCM proceeds by comparing different models of the data through (an approximate lower bound on) 
the Bayesian model evidence, where models typically differ in their connections (parameters); normally 
those connections that are modulated by an experimental manipulation (here, by faces). When there are 
multiple subjects, one can create a single hierarchical model, enabling an Empirical Bayesian approach 
in which the mean and covariance of parameters across subjects can act as a prior on individual subject 
parameter values. Since DCM also assumes multivariate normal error terms (so-called ‘parametric’ 
assumptions), this approach is called Parametric Empirical Bayes (PEB); see papers by Zeidman and 
colleagues (Zeidman, Jafarian, Corbin, et al., 2019; Zeidman, Jafarian, Seghier, et al., 2019) for more 
details. 

There are many models one could compare. For example, one could ask whether face processing 
modulates connections between ROIs, or whether it is sufficient to explain face-related responses in 
each ROI simply via modulations of each ROI’s self-connections. If the latter ‘self-only modulation’ 
model were more parsimonious (had higher model evidence), then there would be no need to assume 
that faces change the effective connectivity between regions (and the traditional voxel-wise analysis of 
univariate statistics would be sufficient, as in Henson et al., 2019). 

The tutorial consists of two main sections: 1) specifying and estimating a single-subject DCM for fMRI, 
and 2) estimating group-level DCMs for fMRI with inference based on model comparisons. 

4. DCM for fMRI 
Preprocessing of the fMRI data is described in Supplementary Material of Henson et al. (2019) 
https://www.frontiersin.org/articles/10.3389/fnins.2019.00300/full#supplementary-material, but if you 
do not want to repeat that, you can download the preprocessed image files and first-level models from 
the Figshare link below. More practical help on DCM for fMRI can be found in Chapter 36 of the 
SPM12 manual, https://www.fil.ion.ucl.ac.uk/spm/doc/spm12_manual.pdf. 
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4.1 Preparation 
In order to run this tutorial, there are two preparatory steps involved: setting up the software 
environment, and organizing data. For preparing the environment, install SPM12 from 
https://www.fil.ion.ucl.ac.uk/spm/software/download/ somewhere on your local system. The results in 
this tutorial were obtained with release ‘r7771’. Once installed, clone or download the git repository at 
https://github.com/pranaysy/MultimodalDCM to a folder. This contains some small edits to SPM  
functions that are detailed in the README. Launch MATLAB and using the file browser panel, 
navigate to the cloned or downloaded repository folder. We will refer to this folder as ‘base_dir’ in 
the tutorial as well as scripts. 

Once the environment is ready, the data can be organized according to the level of pre-processing, with 
three possible starting points: 

1. You could begin with raw data from OpenNeuro (https://openneuro.org/datasets/ds000117) and 
run the demo in the supplementary material of Henson et al. (2019) to preprocess the raw 
images into smoothed, normalised, slice-time corrected and realigned images. Note that the full 
data is about 85GB in size. Once you have downloaded and finished processing the data, you 
will have a BIDS directory tree with processed derivatives in the folder 
‘data/derivatives/SPM12’. We refer to this folder as ‘derpth’. 
 
The data in this folder are not yet ready for fitting DCMs and need to be processed further. The 
SPM single-subject models will need to be reparametrized, their runs concatenated and re-fit to 
all the smoothed, normalised fMRI volumes, after which extraction of VOI time courses will 
be necessary. These steps are described in sections 4.2 and 4.3, with precise details given in the 
Appendix. DCMs can then be fit using the extracted VOI time courses and reparametrized SPM 
models. 
 

If you are not starting with raw data from OpenNeuro and would like to proceed with pre-processed 
data, you have two choices: 

 
2. You could download fMRI images that have already been preprocessed from Figshare in the 

file ‘fMRI_ProcessedData_Individual_Runs.tar.xz’ 
(https://doi.org/10.6084/m9.figshare.25192793.v1) and extract into the ‘data’ folder in 
‘base_dir’. Note this will take almost 17GB after extraction. The data folder should now have 
a directory tree that looks like ‘base_dir/data/derivatives/SPM12’. We refer to this folder 
as ‘derpth’. Inside this folder there are 16 sub-directories called ‘sub‐01’, ‘sub‐02’ etc, each 
of which have a further sub-directory called ‘fmri’, in which there should be three types of file 
for each of 9 runs: the 4D smoothed, normalised NIFTI images (‘swsub‐*.nii’), a MATLAB 
file with the trial definitions (‘sub‐*_run‐*_spmdef.mat’) and a text file with the 6 motion 
parameters from spatial realignment of the volumes (‘rp_sub‐*_run‐*.txt’). Single-subject 
first-level models will need to be created using the same steps for reparametrizing, 
concatenating and VOI extraction as described in sections 4.2 and 4.3. 

 
3. Lastly, you could start directly with processed DCM-ready data, which consist of extracted VOI 

time courses for the 3 ROIs: bVC, lFFA and rFFA, along with reparametrized SPM.mat files 
for each subject. If you use this dataset, you can skip sections 4.2 and 4.3 and proceed directly 
to section 4.4 for specifying DCMs. For this approach, download the file 
‘fMRI_DCMreadyData_VOI_TimeCourses.tar.xz ’ from the same Figshare link as above, and 
extract into the ‘data’ folder in ‘base_dir’. The data folder should now have a directory tree 
that looks like ‘base_dir/data/derivatives/SPM12’. We refer to this folder as ‘derpth’. 
Note this will take up around 1.1GB of space after extraction. Each subject’s data in consists 
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of one SPM.mat file and one file each for the three VOIs along with masks. These are the same 
files that would be produced by running the steps described in sections 4.3 and 4.3. 

 

4.1.1 Initialisation 
Open ‘spm_master_dcm_fmri_peb_batched_script.m’ from the ‘base_dir/code/fmri’ folder. 
There is some MATLAB code at the start that is necessary to start SPM and define some key variables. 
First start SPM12: 

SPM12PATH = <insert path to your local install of SPM12> 

addpath(SPM12PATH); 

spm fmri 
 
Then define some paths where you have downloaded the code and data from above: 

base_dir = <path to where you have cloned the respository> 

derpth = fullfile(base_dir,'data','derivatives','SPM12')  

% above will exist if you have run preprocessing scripts for Henson et al,  

% 2019, or else create these directories and download and extract 

% “fmri_data.tar.gz” from Figshare as above 
 

Next, add the ‘code’ folder and all subfolders in it to MATLAB’s path by running this line:  

addpath(genpath(fullfile(base_dir, 'code')))  

This ensures that all the code we provide is available in MATLAB’s environment. This is necessary 
because our scripts for batch processing rely on functions in various files – some of which enable 
parallel processing, some are ‘job files’ used by SPM’s batching interface while some are modified 
SPM functions, which have been updated for this tutorial. It is crucial to add this ‘code’ folder to the 
MATLAB path after your local installation of SPM has been added to MATLAB’s path and launched. 
This sequence of operations will put our ‘code’ folder at the top of MATLAB’s list of paths, which can 
be viewed by typing pathtool on the command line. Since the updated SPM functions we provide 
share the same filenames with the original SPM functions, adding the two in this exact order guarantees 
that when a function is to be executed, MATLAB will look for any version in our ‘code’ folder first, 
since it is higher in the path. A list of modified SPM functions with a brief overview of changes is 
provided in the README file on the GitHub repository for this tutorial, linked earlier. 

Then you can run the lines below to define some variables: 

% If you have all raw data 

% BIDS = spm_BIDS(rawpth); 

% subs = spm_BIDS(BIDS,'subjects', 'task','facerecognition'); 

% runs = spm_BIDS(BIDS,'runs', 'modality','func', 'type','bold', 

'task','facerecognition');  

 

% Else specify subjects and runs manually 

Subs   = compose('%02g', [1:16]);  

nsub   = numel(subs); 

subdir = cellfun(@(s) ['sub‐' s], subs, 'UniformOutput',false); 

 

Then, if you have access to multiple cores (parallel processing in Matlab), you can run below (if not, 
set “numworkers” to 0): 

numworkers = nsub; % Number of workers for distributed computing  

if numworkers > 0  
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    delete(gcp('nocreate')) % Shut down any existing pool 

    parpool(numworkers); 

end 
 

4.2 Re-parametrising each subject’s fMRI model 
If you have downloaded the data and models from Henson et al. (2019), two further preprocessing steps 
are required before we can create DCM models: 1) re-parametrising the single-subject (1st-level) fMRI 
general linear model (GLM) for each subject, and 2) extracting the (adjusted) fMRI timeseries for each 
ROI and each subject. 

The first step of re-parametrising the GLM involves defining two conditions: 1) all stimuli (faces and 
scrambled), to be used as the driving input for DCM (‘C’ matrix) and 2) faces only (collapsing famous 
and unfamiliar), to be used as a modulatory input for DCM (‘B’ matrix). It also involves concatenating 
the 9 runs into a single run for convenience. These steps are described in Appendix 6.1, where they can 
either be implemented by running some MATLAB code on the SPM.mat files produced by the 
Supplementary Section 2 of Henson et al. (2019), or by re-creating the SPM.mat files from scratch using 
SPM’s batch interface.  

4.3 Defining ROI (VOI) timeseries 
DCM fits fMRI timeseries for a number of ROIs. Those timeseries are extracted by taking the first 
temporal mode1 across a number of voxels within a specified volume of interest (VOI) that defines the 
ROI. In SPM, a VOI can be defined by one or more constraints. The full options are described in chapter 
36 (section 36.3.3) of the SPM manual (see also (Zeidman, Jafarian, Corbin, et al., 2019)). Here we will 
define our VOI by two constraints: 1) voxels within a sphere of 10mm radius from MNI coordinates 
that we will provide, 2) voxels that showed an increased response at the onset of stimuli (relative to 
interstimulus baseline), as defined by a T-contrast thresholded at p<0.001 uncorrected. The second 
constraint ensures that voxels within the sphere are likely to be gray-matter that is generally responsive 
to the stimuli (i.e, removing voxels within the sphere that are white-matter or CSF). Of course, further 
constraints could be added (e.g, a gray-matter mask), or other definitions used instead (e.g, a mask 
image created by thresholding each individual subject’s contrast of faces versus scrambled), but they 
are not explored here.  

SPM produces a VOI*.mat file for each ROI and each subject (e.g, ‘sub‐01/fmri/VOI_lFFA_1.mat’ 
for the lFFA of subject 1), which are passed to DCM below. The precise steps needed to create these 
files are described in Appendix 6.2.  

4.4 DCM definition: for single subject 
Unfortunately DCM definition is not yet batched in SPM, so we need to go through SPM’s GUI by 
pressing the ‘DCM’ button (the following mirrors the PDF available here: 
https://github.com/pzeidman/dcm-peb-example).    

In MATLAB, use the file selector on the left hand side to change the working directory to sub-15. We 
now walk through each step involved in specifying the ‘full’ DCM model, which we will subsequently 
estimate. 

• Click the big Dynamic Causal Modelling button in main SPM window. In the grey window that 
appears, click ‘Action’ and then ‘specify’. 

• In the file selector, click the SPM.mat file from sub-15 on the right hand side and then click ‘Done’. 
This provides DCM with the timing of the experimental conditions. 

                                                      
1 This is from a singular-value decomposition of the data to extract the first temporal and spatial singular vectors. 
If all the voxels were equivalent, the temporal mode would be equivalent to the average over all voxels. 
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• You’ll be asked for a name for the new DCM. Type: ‘Full’ and press enter. 

• You’ll be asked to select the VOIs (volumes of interest) for this subject. These are the timeseries for 
each brain region, which have already been prepared. The order is important - the same order will be 
used for the regions in the DCM. For consistency with this tutorial, select in order: bVC, lFFA, rFFA 
and click ‘Done’. 

• Now you are asked which experimental conditions to include – include both ‘All’ (faces+scrambled) 
and ‘Faces’; select ‘yes’ for both. 

• For VOI timings, keep 1 (second), ie half TR, since the data were temporally interpolated to match 
the acquisition time of the middle slice. 

• For Echo Time (TE), change to 0.03 (30ms), which was used on this 3T scanner. 

• You are now asked to set certain options for the model. Keep defaults of bilinear, one state per 
region, no stochastic effects, no centred input, and fitting fMRI timeseries. 

• You are now asked which connectivity parameters you want switched on (free to be informed by the 
data) and which you want switched off (fixed at their prior expectation of zero). These are connectivity 
parameters in matrix A from the DCM neural model, which is the average connectivity over 
experimental conditions. The self-connections (on the leading diagonal) are always switched on (and 
are always negative, to ensure the network dynamics converge to a steady-state), so this screen is really 
asking you to select which between-region connections to include. Each column is an outgoing 
connection and each row is an incoming connection. Switch all these between-region connections on, 
according to Figure 2 and then press done. (Tip: holding your mouse pointer over a button will identify 
the nature of the connection.) 

 

Figure 2: DCM specification for matrix A. 
 

• Next you are asked about each of the experimental effects, starting with ‘All’ stimuli. The buttons on 
the left are the driving inputs (matrix C). Set all stimuli to drive bVC only, as in Figure 3 and press 
done. 

 

Figure 3: DCM specification for driving inputs (C) for all stimuli. 
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• Next you are asked about the effect of ‘Faces’ stimuli. For these trials, we will use the buttons on the 
right, which reflect the modulatory inputs (matrix B), which increase or decrease the strength of 
particular connections as a function of whether or not the stimulus on each trial was a face. Here, we 
allow this experimental condition to modulate all B connections, as shown in Figure 4.  

 

Figure 4: DCM specification for modulatory inputs (B) for faces only (in full model). 
 

You will receive a polite ‘Thank you’ and a file called ‘DCM_Full.mat’ will have been created in this 
subject’s directory. 

 

4.5 Estimating full model for single subject 
 
Before running this step, copy ‘DCM_Full.mat’ to a new file ‘DCM_Full_sub‐15.mat’ in the same sub-
15 directory. This is because this way of estimating of a DCM will update that file with the posterior 
estimates, yet we do not want to use these posteriors when we re-fit all subjects later in this demo. To 
fit DCM to the data, you can press main DCM button, select ‘Action:… estimate (time‐series)’ 
and select the ‘DCM_Full_sub‐15.mat’ file. Or equivalently (to avoid copying step), you could run this 
code: 

load(fullfile(outdir,'DCM_Full.mat')); 

DCM = spm_dcm_estimate(DCM); 

save(fullfile(outdir,'DCM_Full_sub‐15.mat'),'DCM'); 
 

Once estimated, press the main DCM button again, select ‘review’ and choose the ‘DCM_Full_sub‐
15.mat’ file. Select the option ‘effects of All’ under ‘review’, and you should see Figure 5. All 
stimuli (faces and scrambled) functioned as the driving input (C), which we specified to bVC, and the 
results show that this input was needed (posterior probability close to 1), as shown in top right panel of 
bottom section (the top left panel of that section  shows actual values, in Hz). There are no results for 
the B connections, because we only allowed the second input (Faces) to modulate connections. 
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Figure 5. Single-subject fit of full model – Effects of All (Faces + Scrambled) 
 

If you go back to ‘review’ window, and select ‘effect of Faces’ instead, you will see Figure 6. In 
the bar graphs for the modulatory (B) connections (bottom right), you can see that some are needed 
(above the red dotted line for 0.9 probability), eg forward connection from bVC to lFFA (middle blue 
bar). Again, their values are shown in bottom left panel. 
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Figure 6. Single-subject fit of full model – Effects of Faces 
 

You can review the ‘fixed (A) connections’, but these are not very interesting in this context. You 
can also specify ‘contrasts of connections’ (parameters), which we will not explore here (we will 
keep our inference at group level, across models; see later). You can also review ‘location  of 

regions’, and the ‘inputs’ (from the SPM.mat) file, but more interesting are the ‘outputs’, shown in 
Figure 7. The solid blue line shows how well DCM fits the data (dotted line) in each ROI. Finally, you 
can also examine the ‘kernels’ if you are interested in the neuronal and haemodynamic parameters for 
each region (which we normally are not). 
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Figure 7. Single-subject fit of full model – Outputs 
 

Make sure to quit the review window when finished. 

4.6 Group DCM 
4.6.1 GCM definition: Replicating across subjects 
Having specified a ‘full’ DCM for a single subject, we can now use this as a template to specify the 
same DCM for every subject, and enter into a ‘Group Causal Model’ (GCM). All subjects’ models will 
be the same, except the timeseries and timing of the experimental input, which will be customized for 
each subject. The batch GUI can replicate an existing specified model across subjects, filling in each 
subject’s data in specific fields. This approach works when all subjects have exactly same timings, but 
is not currently designed to accommodate differences in timings that may result due to variable number 
of scans in some runs. In our data, subject 10 had a different number of scans for a run, and therefore 
input timings in this subject’s model need to be specify separately. You can proceed in one of two ways: 

A. Use the batch GUI to replicate the template model over all subjects except sub-10 to obtain a 
GCM of 15 subjects. Then separately specify sub-10’s model and ‘wedge’ it in the GCM.  
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B. Use a helper script called ‘GCM_Helper.m’ in ‘base_dir/code/fmri’ which automates the 
creation of GCM from a template model and each participant’s data, and handles differences 
in timings due to variable number of scans. This directly creates a GCM with all 16 subjects. 

Here we illustrate option A using the batch GUI: 

Open the batch GUI. From the menu at the top of the Batch Editor, click SPM → DCM → DCM 
specification → DCM for fMRI → Specify group: 

• Output directory - double click Output directory to bring up the file selector. We will store the GCM 
file in the templates folder located at ‘base_dir/fits/batch_gui/fmri/templates/GCMs/Full’. 
Navigate to this directory and pressing the single dot ‘.’ (which indicates current directory). Then press 
Done. 

• Output name - double click, then type ‘Full’ and press OK. 

• Full DCM - double click, then in the file selector, select the full DCM we made earlier for sub-15. It 
is named ‘DCM_Full.mat’. Select this on the right hand side, then press Done. 

• Alternative DCMs – leave empty.  

• SPM.mat files - We will now select all subjects’ SPM.mat files except sub-10’s, which contain the 
timing information for each subject. Once in the base DCM directory, you should now see a list of all 
subject directories. Press the small ‘Rec’ button (for ‘recursive search’). This will search through all 
subject directories and pick out their SPM.mat files (since the ‘filter’ is set for SPM.mat files only). 
Check that all 16 are selected at the bottom of the file selector window, remove the file corresponding 
to sub-10 by clicking on it and press ‘Done’.  

• Regions of interest - Now we’ll select the timeseries (VOIs) for each subject except subject-10. Click 
Regions of interest then click New: Region (VOI files). Do this three times, so you get three entries in 
the batch that say ‘Region (VOI files)’. From the base DCM directory, edit the filter on the selection 
box from ‘^VOI_.*\mat$’ to add ‘bVC’, i.e. to make ‘^VOI_bVC.*\mat$’ (this is a ‘regular expression’ 
in linux that matches certain strings, here in the filenames). Then click ‘Rec’, which will search through 
all the subjects’ folders selecting the 16 bVC VOI files. Again, remove the files corresponding to sub-
10 and press ‘Done’. 

• Repeat for the other two ROIs, just changing the filter name, but importantly the order you enter them 
must be lFFA and then rFFA (to match order in DCM specification files) and make sure you deselect 
files for sub-10. 

• Click File → Save batch and save it in ‘saved_from_batch_interface’ sub-directory in 
‘base_dir/code/fmri’ as ‘batch_dcm_create_gcm’ (just for record, eg to check in case any manual 
mistakes made).  

Then press the green play button to run this module.2 You’ll see one DCM file in each subject’s folder 
named ‘DCM_Full_m0001.mat’ (the full model). Their filenames will also be collated into a single cell 
array and saved in a mat file named ‘GCM_Full.mat’ in the templates directory. This file consists of 
paths to each subject’s specified DCM files. Load it into the MATLAB workspace by running: 

model = load('GCM_Full.mat'); 

GCM = model.GCM; 

                                                      
2 In the accompanying tutorial on MEG, we will demonstrate the use of ‘dependencies’ within SPM’s batch 
interface, where the output(s) from one module can be specified as the input(s) to subsequent modules, even 
though those output files have not yet been created, in order to create a single ‘pipeline’ of modules before running 
it. 
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Next, specify a model for sub-10 by following the steps in section 4.4, and entering sub-10’s SPM.mat 
and VOI files instead of sub-15’s. After saving this file, close the DCM GUI, navigate to sub-10’s data 
directory, find the ‘DCM_Full.mat’ file and assign its full path to a variable in MATLAB’s workspace: 

DCM10 = '/home/.../base_dir/data/derivatives/.../sub‐10/CatGLM/DCM_Full.mat'; 

Now, insert path to sub-10’s specified model in the 10th index of the GCM cell array by running: 

  GCM = {GCM{1:9}, DCM10, GCM{10:end}}’;  % Make sure this is 16×1, not 1×16 

Lastly, save this GCM as ‘GCM_Full.mat’ and overwrite the existing file. 

4.6.2 Estimating GCMs 
Having specified DCMs for every subject, we now fit them to the data. In the Batch editor, click File 
→ New Batch. Then click SPM → DCM → DCM estimation. Fill out the batch as follows: 

• Select GCM *.mat - double click, then select the file named ‘GCM_Full’ we created earlier from the 
templates directory. Then press Done. The file we selected contains a cell array of DCM filenames. 

• Output - single click Output, then click ‘Create group GCM *.mat file’ and for output, select the 
‘base_dir/fits/batch_gui/fmri’ directory and name it ‘Full’. For Estimation type, choose ‘Full 
+ BMR (default)’; other items can be left on their defaults too.  

Save this batch by clicking File, Save  Batch as ‘batch_dcm_fit_gcm’ in 
‘saved_from_batch_interface’ sub-directory in ‘base_dir/code/fmri’ for record, and press green 
play button. This will take a long time, though if you have multiple cores, you can speed up DCM 
estimation by using MATLAB’s parallel computing: this ‘use_parfor’ switch has been on in the 
modified version of spm_dcm_fit.m in the ‘code’ directory. 

This will fit each full model to the subject’s data independently. The results will overwrite the DCM 
files in each subject’s folder.  

 

4.6.3 Diagnostics 
Having completed the estimation of the first-level DCMs, it is a good time to perform some diagnostics 
on the models. First, in the main Matlab window, change to the analyses directory 
(‘base_dir/fits/batch_gui/fmri’) and load the ‘GCM_Full.mat’ file and then execute following 
SPM command within Matlab console: ‘spm_dcm_fmri_check(GCM)’. 

The output of this command should look like Figure 8.3 This is a graphical representation of the GCM 
file, where the long coloured bar indicates the explained variance of the DCM for each subject, and the 
columns correspond to models per subject, in our case just the one ‘Full’ model. This column will have 
the explained variance calculated (averaged across all ROIs). Here we clicked on the model for subject 
2, who had explained variance 39.16%. (Depending on your SPM version, you may get slightly different 
explained variance.) The lowest of 11.78% is for subject 12, while the highest is 49.60% for subject 14. 
As explained in DCM literature, % variance explained is not the ideal criterion (model evidence 
captures this accuracy, but also ‘adjusts’ for model complexity), but as a rule-of-thumb, one might be 
concerned if DCM explained <10% of the variance (e.g, there could be excessive noise in data from 
one participant, or incorrect GLM specification, or just poor DCM choice) 

After clicking on a participant’s full model (left hand column of the figure), you can click the 
Diagnostics button, to further explore, eg, the predicted timeseries, as we did for the single subject DCM 
fit for subject 15 in Section 4.5. 

                                                      
3 Press “CTRL-“ or “CTRL+” on “SPM Figure” menu if font too big/small. 
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Figure 8. Diagnostics of fits of full model for each participant 
 

4.7 Second level analysis: PEB 
Having estimated each subject independently in the previous section, we now want to get a single 
measure of model evidence at the group-level (hierarchical) model. We might also want to examine 
differences between subjects by specifying group covariates like age or sex (see later for an example), 
though for now we just estimate the simple group average, for simplicity. 

4.7.1 PEB model specification 
Go to the main SPM window and click Batch. Then click SPM → DCM → Second level → Specify / 
Estimate PEB.  

• Name - This is a name for the analysis, which you can enter ‘Full’, since SPM with prepend ‘PEB’ to 
create file ‘PEB_Full.mat’. 

• DCMs - Double click, then navigate to the ‘base_dir/fits/batch_gui/fmri’ folder and select the 
file named ‘GCM_Full.mat’.  

• Selected DCM index - Leave this on the default value of 1.  

• Covariates – keep as ‘none’, but later below, we will add age here. 

• Fields - We are only going to take parameters from DCM matrix B to the group level. Click Fields, 
then click ‘Enter  manually’. Double click ‘Enter  manually’ and type: {‘B’} including the curly 
braces, then press OK. 
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• Leave rest as default 

Now save the batch by clicking File, Save Batch and give it a name like ‘batch_dcm_fit_peb’. Then 
run the batch by pressing the green play button. This will create and estimate the group-level PEB model 
and store the results in a file called ‘PEB_Full.mat’.  

4.7.2 Model comparison: automatic search 
To make use of the PEB model, we need to perform a model comparison. The simplest form of model 
comparison to run is an automatic search, which will prune parameters from the PEB model that do not 
contribute to the model evidence. The software will specify and compare hundreds of candidate reduced 
PEB models, in which different combinations of parameters have been switched off. This search can be 
performed quickly owing to a method called Bayesian Model Reduction (BMR), in which the 
parameters and model evidence for any nested model can be estimated from the full model fit by simple 
equations, without needing to re-fit each nested model to the data. Moreover, we can also average the 
parameters (connection strengths) across the whole model space, weighted by the model evidence for 
each model; a process called Bayesian Model Averaging (BMA). 

In the batch editor, click File → New  Batch then click SPM → DCM → Second  level → Search 
nested PEB models. Fill it out as follows: 

• Select PEB file – Select ‘PEB_Full.mat’ created above 

• DCMs - Select the file ‘GCM_Full.mat’ – this file is only needed because it contains information about 
the full model needed for graphical output.  

• Null prior variance - This determines the null hypothesis for each connectivity parameter - i.e. what 
prior variance constitutes a connection being ‘switched off’. Set this to 0 (zero). 

Save the batch as ‘batch_dcm_peb_searchbmr’ and press the green play button. This will produce a 
file called ‘BMA_search_PEB_Full.mat’, as well as three windows: 

The window titled ‘BMR ‐ all’ (Figure 9) details 128 candidate PEB models from the final iteration of 
the automatic search (this number of 27 is because 7 out of total 9 ‘B’ matrix parameters were identified 
by the procedure to produce the least reduction in model evidence when switched off individually). The 
top left plot shows the log model evidence for each PEB model and the top right shows these values 
converted to posterior probabilities. Note that typically no single model wins (in sense of conventional 
probability >0.95), though a few models are much more likely than remaining ones – for instance, here 
model 128 has a moderately high probability (~0.85). 

The second row shows the parameters of the PEB model before the search (left) and after the search 
(right). Only two parameters have been pruned away because they did not contribute to the model 
evidence (free energy) – the fourth and sixth. We will return to the identity of these parameters shortly. 

The bottom left plot shows the parameters that were switched on (white) and switched off (black) in 
each model from the final iteration of the search. For example, B(1,1,2) – the modulatory effect of faces 
on self-connection of bVC – was switched off in the first 64 models and switched on in the second 64 
models. Finally, the bottom right plot shows the posterior probability for each PEB parameter. This is 
computed by comparing the evidence for all models (out of the final 128) that had the corresponding 
parameter switched on, versus all models that had that parameter switched off. 
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Figure 9. PEB BMR automatic search of whole model space: “BMR-all” window  
 

With a large model comparison such as this, it is unusual to find one model that is the overall winner. 
Instead of considering the individual models, it is generally more informative to consider the BMA - 
the weighted average of the parameters over models. The window titled BMC (Bayesian Model 
Comparison, Figure 10) shows this average, with plots organised into three rows. The top row shows 
parameters from the estimated PEB, while the middle row shows parameters from the BMA, with their 
respective posterior probabilities in the bottom row. The bottom row shows that all parameters have 
posterior probabilities close to 1 except three – the eighth parameter has a probability of ~0.85, while 
the fourth and sixth parameters, which were pruned away. This suggests that parameters 1, 2, 3, 5, 7 
and 9 are needed to explain the effects of faces over scrambled faces.  
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Figure 10 PEB BMR automatic search of whole model space: “BMC” window  
 

The final window, titled ‘PEB ‐ Review Parameters’ (Figure 11), is an interactive tool that provides 
an easier way to explore the results (should you need to open this tool yourself at a later stage, then the 
command is: ‘spm_dcm_peb_review(BMA,  GCM)’, after loading the BMA, PEB and GCM files into 
Matlab). 

• The boxes in top left give the number of regressors (covariates – just single group mean here) in the 
between-subjects design matrix, the number of DCM parameters (9 ‘B’ parameters passed to PEB) and 
the number of subjects (16). The between-subjects design matrix is shown below, with one subject per 
row and one covariate of mean across subjects. 

• The estimated between-subject covariance matrix. The diagonal is the estimated between-subjects 
variance for each parameter, where the more white they are, the greater the between-subjects variability. 
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Clicking on each item identifies the corresponding parameter (e.g, the backward connection from lFFA 
to bVC is most variable across subjects). 

• The parameters are grouped by covariate, but here only one, so select ‘Commonalities’.  

• Optionally, the parameters can be thresholded to just focus on the most probable effects. The first 
drop-down menu switches between thresholding based on the free energy (model comparisons 
with/without each parameter) and thresholding based on the posterior variance (the pink error bars). 
Where possible, we recommend selecting free energy, to accommodate interactions between 
parameters. The menu on the right is used to select the threshold, eg >0.95. 

• The bars are the parameters relating to the selected covariate. Pink error bars are 90% credible 
intervals. Clicking on a bar shows the name of the parameter, its expected value, and its probability 
calculated using the option selected above.  

 

Figure 11 PEB BMR automatic search of whole model space: “PEB - Review Parameters” 
window 
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• Use the menus at the bottom of the window to display the parameters as a connectivity matrix. This is 
the same information as displayed in the bar chart, but shown in the same format as the connectivity 
matrices in DCM. Each column is an outgoing connection and each row is an incoming connection. 
First use the selector higher up in the window to choose the ‘Second‐level effect’ of Covariate 1 
(which is simply the mean across participants). Then click ‘Please select a field’ and choose the 
parameters of interest - e.g. ‘B’ for the modulatory inputs (matrix B of the DCM neural model). A small 
window will pop up to select the input (modulator), which defaults to the first input (all faces and 
scrambled), which we did not allow to modulate, so we need to change to ‘Input Faces’, which will 
update the popup window with the connectivity matrix to match Figure 12. This shows posterior 
probability for each connection, coloured by positive or negative sign. 

 

 

Figure 12 PEB BMR automatic search of whole model space: Thresholded B connectivity 
matrix  
 

One can see that all self-connections (on leading diagonal) are needed, and are negative for all three 
nodes. A negative modulation means less self-inhibition when faces (since the self-connections in the 
A matrix are always constrained to be negative), which will tend to result in greater activity for that 
region (though this also depends on modulations of afferent connections from other regions). This is 
because, in DCM, the total self-connection strength is -0.5 * exp( A_ii  + B_ii ) Hz, so if B_ii decreases 
with faces, the connection strength because less negative. 

One between-region connection from rFFA to bVC (backward) is negatively modulated, while both 
forward connections from bVC to lFFA and to rFFA are positively modulated during face processing.  

4.7.3 Model comparison: families 
The automatic search of all possible reducible models from the full model may not be sufficient to 
answer your questions. While it can return BMA estimates of connections that are needed, one might 
have a more general question that spans more than one connection, e.g, ‘Do we need (modulation of) 
any backward connections from left/right FFAs to bVC?’, or ‘Do we need any lateral connections 
between hemispheres?’. First, we are going to ask the question ‘Do we need any modulations of 
connections between ROIs, beyond modulations of self-connections?’ – i.e., use DCM to ask whether 
there is any evidence of effective connectivity during face processing (that cannot simply be explained 
by local activation). In order to do this, we test whether one or more combinations of between-region 
connections are modulated by Faces. This involves specifying multiple ‘nested’ models with different 
combinations of between-region connections being modulated, i.e. switched ‘off’ or ‘on’ in the B-
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matrix. The model space consisting of such ‘nested’ versions of the full model, which features 
modulation of all between-region connections, can then be divided into different ‘families’ (partitions) 
according to which types of modulation are enabled. Below, we will distinguish models according to 
whether they contain self-modulations, modulations of ‘forward’ connections (from bVC to FFA), 
modulations of ‘backward’ connections (from FFA to bVC) or modulations of ‘lateral’ connections 
(between lFFA and rFFA).4 With these four types of connections, we can therefore define 24 = 16 
models in total:  

1. Modulation of forward, backward, lateral and self-connections 
2. Modulation of forward, backward and lateral but not self-connections 
3. Modulation of forward, backward and self-connections but not lateral ones 
4. Modulation of forward and backward connections only 
5. Modulation of forward, lateral and self-connections but not backward ones 
6. Modulation of forward and lateral connections only 
7. Modulation of forward and self-connections only 
8. Modulation of forward connections only 
9. Modulation of backward, lateral and self-connections but not forward ones 
10. Modulation of backward and lateral connections only 
11. Modulation of backward and self-connections only 
12. Modulation of backward connections only 
13. Modulation of lateral and self-connections only 
14. Modulation of lateral connections only 
15. Modulation of self-connections only 
16. No modulation of any group of connections 

By comparing the family of models 1–14 that include forward and/or backward and/or lateral 
modulations with the family of models 15 and 16 that do not contain forward, backward and lateral 
modulations (only with or without self-modulations), we can test a similar hypothesis to the previous 
section i.e., whether between-region connections are needed. The subtle difference is that the precise 
question now being asked is no longer whether all between-region connections are needed, but whether 
at least one type of between-region connection (forward and/or backward and/or lateral) is needed, and 
furthermore, if this holds regardless of whether or not self-connections are also modulated. 

4.7.3.1 Family-BMC for between-region connections 
The first step involves creation of the sixteen template models for each model in the list above, which 
correspond to the matrices shown in Figure 13.  

                                                      
4 Note we are always combining across hemispheres, though one could of course expand the model space to ask 
whether forward, backward or self-connections are needed in specific hemispheres. However, if one does not care 
about hemispheric differences, we are reducing the problem of model dilution by not considering models that 
differ in modulations between hemispheres. 
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Figure 13: Model space for family-wise comparisons. White squares are connections that 
can be modulated (have value 1), whereas grey squares are connections that have been 
turned off and cannot be modulated (they have value 0). 
 

This can be done through the GUI by loading the full model (for one subject), switching corresponding 
B-matrix connections off, and saving as a new file in the directory 
‘base_dir/fits/batch_gui/fmri/templates/GCMs/families’, as done for the ‘Self’ model in 
Section 4.7.3. Or this can also be done more efficiently using simple MATLAB functions through the 
scripting interface, as illustrated on lines 766-819 in the script 
spm_master_script_dcm_fmri_peb_batch.m.  

Either way, the resulting DCM definition files needed to be loaded into a GCM cell array, which now 
contains only one row, but sixteen columns, each column corresponding to one of the models (in same 
order as above). Note that because we will re-use the PEB that we estimated in the previous section, 
which already contains the full model for all subjects, we do not need to specify the alternative models 
for every subject; SPM will realise that the GCM now just contains the model space (for one subject), 
which is sufficient to use BMR to estimate all the nested (alternative) models for all subjects. 

Once you have the GCM cell array in the MATLAB workspace, load the PEB model we fit earlier, and 
reduce the model space using direct calls to the following underlying SPM functions: 

load('fits/batch_gui/fmri/PEB_Full.mat'); 

[BMA, BMR] = spm_dcm_peb_bmc(PEB, GCM); 

Running this will show a window with BMC for all 16 models, along with parameter estimates as shown 
in Figure 14. The model space in the top-left panel reflects the 16 models we defined earlier. Based on 
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the middle left panel, model 1 with modulation of all specified connections in the B-matrix appears to 
have moderately high evidence (~76%), while model 3 with modulation of all connections except lateral 
ones has some evidence (~24%). This is also reflected in the parameter estimates in the BMA, where 
estimates of all parameters have a posterior probability of ~100% except parameters 6 and 8, each of 
which have a probability of ~76%. Next, we proceed to demonstrate partitioning of the model space 
into families for inference. 

 

Figure 14: BMR for the 16 models in model space 
 

We group these models into families by specifying an integer for each of the models in our model 
space defined in the GCM above. Models with the same integer belong to the same family. So to test 
whether between-region connections are needed or not, we assign all models with such connections to 
family 1, and the remaining two models (with modulation of self-connections only, or no modulated 
connections at all) to family 2. This can be done with this line of code: 

 
families = [ones([1,14]), 2, 2];  

 

We can then perform inference at the level of families by running: 
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[~, fam] = spm_dcm_peb_bmc_fam(BMA, BMR, families, 'NONE'); 

where, BMA and BMR are variables obtained from the BMR step earlier.5 Running this produces Figure 
15, with three panels. 

The top left panel shows posterior probability of each family, where the family with modulation of at 
least one between-region connection has overwhelming probability (~1) compared to the family with 
no modulation of between-region connections. The top right panel shows posterior probabilities of each 
model conditioned by the probability of each family. Comparing this panel to the middle left panel from 
the previous figure shows how the probabilities have reduced after conditioning. The bottom left plot 
shows the grouping of models under each family. 

 

Figure 15: Family-wise comparison for modulation of between-region connections due to 
faces. 
 

4.7.3.2. Family-BMC for forward connections 
Since we have evidence for modulation of between-region connections, we can now test whether 
particular sub-groups of between-region connections are modulated by Faces. We do this for both 
forward, backward and lateral connections, by specifying families for each of them.  

                                                      
5 Note we are assuming that each model is equally likely a priori. Note also that spm_dcm_peb_bmc_fam can return 
an updated BMA structure if needed, but we have ignored this output (using the “~” symbol in Matlab and passing 
in the argument ‘NONE’), because we want to re-use the original BMA for further family comparisons below (or 
else you could specify the output as, e.g., “BMAf”, so it does not overwrite the “BMA” from the full PEB that we 
will re-use below).  
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Repeat the last step in the previous section, except with the ‘families’ variable now re-defined to 
[ones([1,8]),  2*ones([1,8])]. This divides the models into families with versus without 
modulation of forward connections. Then run again: 

[~, fam] = spm_dcm_peb_bmc_fam(BMA, BMR, families, 'NONE'); 

This will produce results for the family-wise comparison showing overwhelming evidence (~1) for the 
family with modulation of at least one forward connection. 

4.7.3.3. Family-BMC for backward connections 
Similarly, to test backward connections, set the ‘families’ variable to repmat([1, 2, 1, 2], [1,4]) 
and re-run the spm_dcm_peb_bmc_fam command, and this should produce overwhelming evidence 
(probability ~1) for the family with modulation of backward connections. 

4.7.3.4. Family-BMC for lateral connections 
Finally, to test lateral connections, set the ‘families’ variable to repmat([1, 1, 2, 2], [1,4]) and 
re-run the spm_dcm_peb_bmc_fam command. This should produce moderate evidence (probability 
~0.76), which may not be sufficient evidence (depending on one’s a priori threshold), for the family 
with modulation of lateral connections. 

4.7.3.5. Family-BMC for self-connections 
Lastly, we can test whether self-connections are modulated by faces, by defining the ‘families’ as 
repmat([1,  2],  [1,8]). Re-running the spm_dcm_peb_bmc_fam call should produce the results 
showing overwhelming evidence for the family with self-connections. 

4.7.4 PEB with subject-level covariates 
In this section, we demonstrate the addition of an age covariate for 2nd-level PEB estimation. Although 
we do not expect any effect of age on modulation of connections in these data (given the narrow range 
of adult participants from 23 to 31), we conduct this exercise to highlight the key steps involved, since 
PEB was designed for testing differences between subjects (e.g, patients versus controls).  

In a new batch, add a module to specify PEB by selecting ‘SPM’ → ‘DCM’ → ‘Second  level’ → 
‘Specify  /  Estimate  PEB’. In the options for this module, set ‘Name’ to ‘Age’ and select 
‘GCM_Full.mat’ estimated earlier from ‘base_dir/fits/batch_gui/fmri’ for ‘DCMs’. Leave the ‘DCM 
index’ option as is. 

For ‘Covariates’, select the option ‘Specify covariates individually’ from the grey box below. 
(Alternatively, a full design matrix with all covariates can be passed via this option). Then click on 
‘New: Covariate’ in the grey box to create a pair of options – ‘Name’ and ‘Value’ for the covariate. 
Set ‘Name’ to ‘Age’. For ‘Value’, enter the following numbers, one on each line in the text box that pops 
open on clicking ‘Specify’:  

4.6, ‐1.4, 3.6, ‐0.4, ‐3.4, ‐0.4, 4.6, ‐0.4, 2.6, ‐3.4, ‐2.4, ‐2.4, ‐1.4, ‐2.4, 3.6, ‐1.4 

These numbers are the ages of the 16 subjects taken from the BIDS ‘participants.tsv’ file (available 
here: https://openneuro.org/datasets/ds000117/versions/1.0.5/file-display/participants.tsv), after 
subtracting the mean age (and to one decimal place). Instead of entering the numbers manually, this 
‘participants.tsv’ can be first loaded into MATLAB’s workspace by running: 

data = spm_load(‘participants.tsv’); 

Then in the batch interface’s text box for entering values, simply enter this on the first line: 

    round(detrend(data.ages(1:16), 0), 1) 
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This will take ages of the 16 participants, remove their mean and round to 1st decimal place. Leave the 
remaining lines empty and press ‘OK’. The batch interface will evaluate the specified function and 
automatically fill in mean-corrected ages for all 16 participants. 

This age covariate adds a second column to the design matrix (with the default first column still 
representing the group mean, and the mean correction of ages ensuring the two regressors are 
orthogonal, to ease interpretation).  

 

Figure 16: Specification of Covariates in PEB 
 

 

Figure 17: Entry of Age covariate values 
 

In ‘Fields’, select ‘Enter manually’ and specify the field as ‘{‘B’}’, including curly braces. Lastly, 
set ‘Review PEB parameters’ to ‘Yes’, and press the green play button to estimate this PEB. This will 
generate the file ‘PEB_Age.mat’ in the folder ‘base_dir/fits/batch_gui/fmri’ and open the review 
window with estimates of group-level PEB parameters (Figure 18). 

The review window now shows our design matrix in the top-left corner, with age as the second 
covariate. Since age was mean-centred, the first covariate represents mean modulation of connections 
across subjects. In addition to these common effects estimated at the group level (‘Second‐level 
effect – Commonalities’), the review window now has an additional option of viewing the effect of 
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age by selecting ‘Second‐level  effect  –  Age’ from the drop-down menu. Thresholding these 
parameters based on posterior probabilities shows a subset of modulations were influenced by the age 
of participants. We do not have any hypotheses about these age effects, so do not discuss further, but if 
one wanted to perform further inferences about age, one could use the same model comparison methods 
described above, but on this second PEB covariate instead. 

 

 

Figure 18: Review of PEB Parameters: 2nd level effect of Age 
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5. Discussion 
We have demonstrated workflows for estimating PEB models for group-level inference on the 
connectivity parameters from DCMs of fMRI data. These workflows make use of SPM’s graphical 
batch interface, and illustrate a systematic pipeline that begins with processed multimodal data for 
multiple subjects and ends with group-level inference about modulation of connections. We also show 
how to translate all steps of this pipeline from the graphical interface to batch scripts, which allow for 
greater flexibility and easier chaining of multiple dependent steps. This tutorial accompanies a similar 
one for M/EEG, for which notable differences exist in specifying individual DCMs, but the workflow 
for group-level PEB inference (i.e, once a GCM array has been specified) is identical. 

Using our pipeline, we performed model comparisons at the group level on DCMs estimated from 16 
subjects to test our hypotheses about effective connectivity between three ROIs (bilateral visual cortex 
and left and right fusiform face areas) during perception of faces versus scrambled faces. We first 
performed an automatic ‘greedy’ search over a model space consisting of nested versions of a ‘Full’ 
model, which featured modulation of all connections due to faces. The nested models were derived 
automatically by first identifying which parameters contribute to model evidence, and then switching 
all possible combinations of those parameters ‘ON’ or ‘OFF’. In our case, 7 of 9 possible parameters 
were identified, and 128 nested models were derived from those parameters using this procedure. 
Posterior estimates and model evidence for these nested models were then analytically computed from 
the ‘Full’ model by a technique called Bayesian Model Reduction or BMR. Lastly, a model evidence-
weighted combination of these 128 ‘reduced’ models was used to estimate a Bayesian Model Average 
or BMA. We inspected this averaged model and identified dominant patterns of parameters that 
contribute to model evidence. Applying a threshold of 95% on the posterior probabilities of parameters 
in the BMA, we found that modulation of both forward connections from bVC to FFA, all three self-
connections and the backward connection from rFFA to bVC were needed to explain the data.  

While the automatic search is effective at pruning out parameters that do not contribute to model 
evidence, it operates at a very granular level by comparing individual parameters in the nested model 
space. This often leads to a large number of models being compared, which can lead to dilution of 
evidence. Moreover, such a finer granularity in the model space may not necessarily correspond to the 
hypothesis being tested. Alternatively, this model space can be constructed with a granularity that aligns 
closely with our hypotheses of interest, and then partitions of this model space can be systematically 
compared to identify which sets of parameters are needed in the model to explain the data. We used this 
procedure, called Family-wise Bayesian Model Comparison or FBMC, to test our hypotheses about 
specific types of connections (i.e. forward, backward, lateral and self). We created multiple nested 
models with different combinations of connections, grouped them under ‘families’, and then compared 
these families of models. Each definition of families corresponded to a hypothesis. For example, to test 
the hypothesis of whether modulation of forward connections (from visual cortex to left and right 
fusiform areas) is needed, we grouped all models with at least one forward connection in DCM’s B 
matrix into one family, and all models without into another family. By performing FBMC across these 
families, repeating this process, we observed overwhelming evidence favouring the modulation of 
forward, backward and self-connections, but only moderate evidence supporting the modulation of 
lateral connections. 

These findings from our DCM analysis suggest that an increased flow of information from bVC to 
FFA drives the increased response to faces over scrambled images. This preliminary evidence 
favouring a role of self-connections and forward connections from bVC to FFA are partly in 
agreement with extensive experimental findings in humans and non-human primates. The results 
differ somewhat from the companion tutorial on DCM for ERPs (using M/EEG data), where 
modulation of forward, backward and lateral connections were needed and no self-modulation was 
needed, but the underlying neuronal models and timescales are quite different, such that there are 
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good reasons why the connectivity captures different aspects of true neuronal interactions. Note we do 
not make strong scientific claims from these results, and other work has shown the importance of 
considering other ROIs, such as input to both EVC and FFA from early visual cortex (Lee et al., 
2022).  

6. Appendix  
6.1 Re-parametrising the SPM model 
In the Supplementary Section 2 of our previous tutorial (Henson et al., 2019), we fit a GLM to each 
subject in which there were 3 conditions: famous faces, unfamiliar faces and scrambled faces. In the 
present tutorial, we ignore the distinction between famous and unfamiliar faces, simply to make the 
tutorial simpler. More importantly, DCM normally assumes a common driving input (the ‘C’ matrix in 
DCM), plus one or more modulatory inputs according to different conditions (the ‘B’ matrix or 
matrices). To define the driving input, we need to define a new condition which contains all trials (i.e, 
onsets for all famous faces, unfamiliar faces and scrambled faces). Then the second condition will be 
faces only (i.e, onsets for famous and unfamiliar faces), and this will be used as the only modulatory 
input for DCM.  

A second change to the GLM is to concatenate data across all 9 runs. In principle, DCM could be 
estimated for each run separately (and combined with 3-level PEB model across runs and subjects), but 
it is easier (and more typical) to concatenate runs within each subject. This requires concatenating 
volumes, onsets and motion parameters across runs, and creating a new SPM.mat file that contains only 
a single run, while maintaining the temporal filtering from the original run-specific design matrix (using 
‘spm_fmri_concatenate’ function below). 

These steps can be achieved in two ways.  

6.1.1 Updating existing SPM.mat files using MATLAB  
The first approach is to run lines 171 to 235 from the section ‘Combine’ in the script 
spm_master_script_dcm_fmri_peb_batch.m, which extracts the information from the SPM.mat files 
assumed present if you have run Supplementary Section 2 of Henson et al (2019). This code aggregates 
volumes, movement parameters and trial information across all runs for each subject, specifies a 
concatenated GLM with new conditions ‘All’ and ‘Faces’, and then estimates this model to an updated 
SPM.mat file.  

6.1.2 Recreating SPM.mat files using SPM’s Batch 
The second is to use SPM’s batch script. This creates new SPM.mat files from scratch (like in Henson 
et al., 2019), assuming you have the preprocessed fMRI volumes (either from Henson et al., 2019, or 
from Figshare link in main paper). This uses two batch jobs, 
batch_stats_fmri_concatenated_specify_job.m and 
batch_stats_fmri_concatenated_estimate_job.m in ‘base_dir/code/fmri’.6 

                                                      
6 Alternatively, the batch job for specification can be created by editing “batch_stats_fmri_job.m” in 
https://figshare.com/collections/Multimodal_integration_of_M_EEG_and_f_MRI_data_in_SPM12/4367120 in 
the code/scripted folder, as follows: 
1. Delete lines 17-64, ie from “matlabbatch{1}.spm.stats.fmri_spec.sess(2).scans = '<UNDEFINED>';” to 
“matlabbatch{1}.spm.stats.fmri_spec.sess(9).hpf = 128;”, because we only want one session (run) 
2. Delete lines 72 onwards, ie from “matlabbatch{2}.spm.stats.fmri_est.spmmat(1) = cfg_dep('fMRI model 
specification: SPM.mat File', substruct('.','val', '{}',{1}, '.','val', '{}',{1}, '.','val', '{}',{1}), substruct('.','spmmat'));” 
3. Save as “batch_stats_fmri_concatenated_specify_job.m” in “code/fmri” directory 
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Unfortunately spm_fmri_concatenate.m is not batched, so see lines 237 to 291 of the supplied script 
‘spm_master_script_dcm_fmri_peb_batch.m’, which shows how to integrate this step as a part of 
the batch scripting pipeline. 

The batch job for estimation can be created by starting SPM (eg ‘spm  fmri’ once SPM12 on 
Matlabpath), open Batch and create a new batch job to estimate this new concatenated SPM and evaluate 
a basic effects of interest contrast, as explained below: 

From batch interface, select SPM:Stats:Model  Estimation, and then SPM:Stats:Contrast 
Manager. For ‘Select SPM.mat’ from Contrast Manager, select ‘Dependency’ and SPM.mat file that 
(will be) produced by Model estimation.  

In Contrast  Sessions, select new F-contrast, called ‘Effects  of  Interest”, and for ‘Weights 
matrix’, enter ‘eye(2)’, which is a MATLAB function for creating the identity matrix [1 0; 0 1].  

Next, add a T-contrast called ‘All > Baseline’, and for ‘Weights matrix’, enter [1 0]. (This is 
used in main paper to restrict voxels in the VOI to those activated by the stimuli.) 

Then call batch in (par)for loop for each subject as per lines 242 to 291 of the section ‘Combine’ in the 
script ‘spm_master_script_dcm_fmri_peb_batch.m’ 

While the onsets and regressors in the GLM have been concatenated, ‘underneath the hood’, SPM has 
kept separate highpass filters and separate autocorrelation estimation for each run (since not really a 
continuous timeseries, though small discontinuities across run boundaries might remain in the GLM, 
for example if the HRF for one run overlaps next, so it is a good idea to have ~30 seconds of rest at end 
of each run if planning to concatenate).  

Finally, if you do not wish to use either step above, you can download re-parametrised SPM.mat files 
from: https://doi.org/10.6084/m9.figshare.25192793.v1 

6.2 VOI creation 
As stated in main paper, our ROIs are bilateral OFA and FFA. They are defined by 10-mm radius of 
spheres centred on coordinates explained in the main paper. You’ll need to have re-parametrised the 
SPM.mat files as explained in Appendix 6.1. 

From batch interface, press SPM:Util:Volume of Interest, then: 

 Enter ‘1’ for ‘Adjust data’ (for selecting the “effects of interest” contrast above, the null space of 

which defines the confounds that will be removed from the data, e.g. motion parameters) 

 Enter ‘1’ for ‘Which session’ (since there is only one run now runs have been concatenated) 

 For ‘Region(s)  of  Interest’, select ‘New: Sphere’, enter ‘10’ for ‘Radius’, leave ‘Centre’ 

‘undefined’ (we will complete below). 

 In ‘Region(s) of Interest’ again, select ‘New: Thresholded SPM’, and set Contrast to ‘2’ (i.e, 

we only want voxels that are activated by stimuli versus baseline) 

 For Expression, enter ‘i1&i2’7  

 So empty fields are SPM.mat file, Name of VOI, and Centre (which we provide in script). 

 Save and script as ‘batch_VOI’ 

                                                      
7 This is the same format as SPM’s ImCalc function to do basic operations on every voxel across a set of images 
indicated by i1, i2, i3, etc. Here the use of “&” restricts voxels to those that are non-zero in both images i1 and i2 
(where those images are the sphere and the set of voxels showing p<.001 uncorrected). 
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 Type in these coordinates as centres of spheres for each ROI: 

bVC  [    0, –90,    0] 

lFFA [–42, –56, –20] 

rFFA [+42, –52, –14] 

Then call batch in (par)for loop for each subject as in lines 305 to 350 from the section ‘VOI’ of the 
script ‘spm_master_script_dcm_fmri_peb_batch.m’. This will produce several graphical outputs 
that you can examine, but focus here is on DCM, and more details on VOI extraction can be found in 
SPM12 manual. 

This saves several files in each subject’s directory for each ROI (VOI), the most important of which are 
called ‘VOI_bVC_1.mat’, ‘VOI_lFFA_1.mat’ and ‘VOI_rFFA_1.mat’. These contain the fMRI 
timeseries (first singular temporal vector) for each ROI that DCM will fit below (plus some other 
parameters needed for DCM). The other files are images, e.g, ‘VOI_lOFA_mask.nii’, which contains a 
binary image defining voxels within an ROI, and ‘VOI_lOFA_1_eigen.nii’, where voxels contain the 
spatial weights instead (first singular spatial vector). 
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