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From simple

networks to diverse
perspectives on
brain connectivity
(Mostly me talking)

Overview

02

Graph theory of
brain networks
crash course (We
work through the
Jupyter notebook
together)

Break

03

Mess around with
some sample brain
network data! (You
are off on your own
)




What Is a network?

Network = Graph

- A graph/network IS simply a set of nodes (a.k.a
yerti---Y —=- ~- - edge

= 03~ o1




What Is a network?

Network = Graph
- A graph/network is simply a set of nodes (a.k.a

L o o=\ mim Al Al - o
ver
undirected edge

dlrected I @@ I /
o3




What Is a network?

Network = Graph

- A graph/network is simply a set of nodes (a.k.a

ver Lrm==) == ‘S'e’rf‘loo‘p
undirected edge

dlrected I @@ I /
o3




What Is a network?

Network = Graph

- A graph/network is simply a set of nodes (a.k.a

Ve|‘ -=-=Y - ‘S'eTf‘IUo‘p

undirected edge
directed @ e /
node

connected component

N




What Is a network?

Network = Graph

A graph/network is simply a set of nodes (a.k.a
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Sample networks: molecules
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Sample Networks: Gene networks

© Cell polarity
0 Cell-wall maintenance

©Others

Nature Reviews | Genetics




Sample networks
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ample networks: Speech networks

“| see a man in the dark standing against a light post . It seems to be in the middle of the night ; | think because the lightbulb is
working . On the picture there seems to be like a park and ... Or trees but in those trees there are little balls of light reflections as
well . | can not see the ... Anything else because it is very dark . But the man on the picture seems to wear a hat and, and has a

jacket on and he seems to have a hoodie on as well . The picture is very , very mysterious , which | like about it , but for me |
would like to understand more concept, context of the picture .”
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Brain networks: brief group
discussion

Let’s say you are interested in studying a brain,
parcellated into a set of regions of interest.

How would we turn it into a brain network? What could
be the edges?

What are some justifications for turning it into a
‘connectome’?




Brain networks: brief group
discussion

Let’s say you are interested in studying a brain,
parcellated into a set of regions of interest.

How would we turn it into a brain network? What could
be the edges?

What are some justifications for turning it into a
‘connectome’?

> Communication between regions across white matter
tracts.

> Harmonized activity patterns between distant regions
suggest network-structure of activity.

> Developmental coordination across different areas of
the brain.

> Strong genetic and phenotypic covariance between
different brain regions.

> More??7?
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The brain as
a multiscale
network

Brain networks can be
studies at various:

» Temporal scales

» Spatial scales

» Topological scales

(And even within the

same scale, multiple

types of connections
n be ggnmdered')

Sett, Neurc?lmage 201




The complete c. Elegans synapt
connectome
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Alternate views on c. elegance -
connectivit

Synaptic cohnectome

Pharynx

Sensory
neurons

Interneurons

Sending neurons
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Motorneurons

Interneurons Motorneurons

Receiving neurons

Source: Cook et al., Nature (2023)

Source: Ripoll-Sanchez et al., biorxiv (2022
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Reverse engineering a famous
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Classic views on human brain

networks

Steps:
1. Parcellate brain into
regions (ROIs)
2. Define pairwise metric of
connectivity

3. Calculate it for all pairs
of ROIs

Common types of brain
connectivity:

1. fMRI-derived estimates of
functional connectivity

2. dMRI-derived estimates
of structural connectivity.

c Functional network

Source: Perry et al, Molecul
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Functional brain connectlwty

A Restlng -state FC (correlations) B Mean task-state FC correlatlons)
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Different paradigms:

» Task-based vs. resting-
Sstate
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Functional brain

Different paradigms:

» Task-based vs. resting-
State

Different metrics of
connectivity:

> Pearson correlation
(most common!), partial
correlation, Granger
causality, etc...

connectivit

Various metrics of Mctional connectivity

Functional connectivity

Non-directed Directed
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Granger Causality
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Functional brain

Different paradigms:

» Task-based vs. resting-
State

Different metrics of
connectivity:

» Pearson correlation
(most common!), partial
correlation, Granger
causality, etc...

Different modalities:
> fMRI, EEG, etc.

connectivit

Various metrics of Mctional connectivity

Functional connectivity

Non-directed Directed

urewop awij

Mutual Cross-correlation, Transfer
Sdielation information . Granger causality entropy

Coherence,
Phase Locking Value
Pairwise Phase Consistency,
Phase Slope Index
Parametric and Nonparametric
Granger Causality

urewop A>uanbai4

Source: Bastos et al., FrontJ‘
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Alternate conceptions of brain
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Alternate conceptions of brain
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Alternate conceptions of brain

CC:
correlated gene receptor laminar metabolic haemodynamic electrophysiological temporal
expression similarity similarity connectivity connectivity connectivity similarity
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Hansen et al., PloS Biology (2023).
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Muiti-Modal Imaging Data
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Alternate conceptions of brain

CC:
correlated gene receptor laminar metabolic
expression similarity connectivity

similarity
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Muiti-Modal Imaging Data
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A) CONSTRUCTION OF INTRACORTICAL SURFACES

ortical depth

nodal intensity profiles

C) MicrosTRUCTURE ProFiLE Covariance (MPCHisT)
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Network neuroscience can bridge
multiscale connectivity

Axonally-connected
brain regions tend to
be more similar
across awide range
of definitions of
biological similarity.

Brain regions with
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Network neuroscience can bridge

multiscale connectivity

Axonally-connected
brain regions tend to
be more similar
across awide range
of definitions of
biological similarity.

Brain regions with
similar gene
expression have
similar structure, tend
to be more connected
by white matter, and
are more likely to be
functionally
connected

MIND network edges
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Selected Insights from brain network

connectivity

Brain networks
constrain patterns
of degeneration In
psychiatric and
neurodegenerative
diseases.

aSydm specific grey-matter tphy

bvFTD LFG CBS RPMC
%ﬁziis} iéﬁ,\é ?;452; gf%‘&z
’@RANG LTPL
b Sponta s functional ¢
é“?‘l g
\4-\ 4(
Structural

Seeley et al., Neuron (Zj

09



Selected Insights from brain network
connectivity

Article | Open Access | Published: 14 August 2023

Brain networks Regional, circuit and network heterogeneity of brain
- abnormalities in psychiatric disorders
constrain patterns poy
Ashlea Segal &, Linden Parkes, Kevin Aquino, Seyed Mostafa Kia, Thomas Wolfers, Barbara Franke,

Of d e g e n e r at I O n I n Martine Hoogman, Christian F. Beckmann, Lars T. Westlye, Ole A. Andreassen, Andrew Zalesky, Ben J.

Harrison, Christopher G. Davey, Carles Soriano-Mas, Narcis Cardoner, Jeggan Tiego, Murat Yicel, Leah

p S y C h i at r i C an d Braganza, Chao Suo, Michael Berk, Sue Cotton, Mark A. Bellgrove, Andre F. Marquand & Alex Fornito
neurodegenerative

diseases.

Nature Neuroscience 26, 1613-1629 (2023) | Cite this article

20k Accesses | 1 Citations | 391 Altmetric | Metrics
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Selected Insights from brain network
connectivity

Brain networks can
help guide the
placement of
electrodes for deep
brain stimulation.

Source: Horn et
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Selected Insights from brain network

connectivity

Brain network
analysis can
shed light on
development of
the human brain
and its
relationship to
cognition and
psychiatric
disorders

a Aggregated data across 119 sites (after quality control)
80

60

Age (yr)

R T

LI 2 o 2 o i

T

& “ e
::: Jodsesasssfonsisancsss .‘.i_.,..|||...|.go.‘6¢‘6§‘£5i " Qéﬂé é

223334232529
238233383258
Fofa{ht=thpnt iy pg T i
=0050p80082209
293252957222
b Fcof subjects at different developmental ages
32 wk Oyr 0.5yr 1yr 2yr 6 yr 10 yr 20 yr 40 yr 60 yr
() ST <
e & & 2 &
# b4 N gt
- & LS

Sun et al., biorxi

80 yr

)

N






Digging Iinto network
measures




properties of brain networks
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properties of brain networks

Special properties of
nodes:

- Spatially-embedded

- Nodes are not
Interchangeable

- Tend to be fully-
connected (thresholding
often must therefore often
be applied).
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The cost-efficiency tradeoff of
‘small-world’ brain networks

Regular Small-world Random

Based on: Watts & Strogatz, Nature (1998).
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