
EEG/MEG 1: 
Pre-Processing and Data Reviewing 

Olaf Hauk 

MRC Cognition and Brain Sciences Unit 
olaf.hauk@mrc-cbu.cam.ac.uk 

http://imaging.mrc-cbu.cam.ac.uk/methods/IntroductionNeuroimagingLectures 

http://imaging.mrc-cbu.cam.ac.uk/methods/IntroductionNeuroimagingLectures


Magnetoencephalography 
(MEG) 

Tiny magnetic fields 
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What We are Measuring 

Household Batteries  
~ 1-12 V 

Cell Membrane Potentials  
~ 70 mV 

Raw EEG: ~ 30 μV 
Eye blinks: > 100 μV  

ERPs: ~ 1-10 μV 

ECG:  
~ 1mV 

Electroencephalography 
(EEG) 

Small electric potentials 



Ancient Greece, 600 BC: 
Thales describes static electricity 
“electron” 

Ancient Egypt, 2750 BC: 
Electric Fish (“Thunderer of the Nile”) 
Some Roman writers mention electric 
shocks as an ailment for headaches (~ 0 
AC)... 
 

Timing Is Essential 

… so here is a bit of history: 



1771 
Luigi Galvani, Bologna, “animal electricity” 

Early Science 

In 1803: 
“On the first application of the process to the face, the 
jaws of the deceased criminal began to quiver, and the 
adjoining muscles were horribly contorted, and one eye 
was actually opened. …   
Mr Pass, the beadle of the Surgeons’ Company, who was 
officially present during this experiment, was so alarmed 
that he died of fright soon after his return home.” 
http://www.executedtoday.com/2009/01/18/1803-george-foster-giovanni-aldini-galvanic-reanimation/ 



1852: Helmholtz, Berlin 
speed of action potentials in frogs 

neurons 

http://www.sciencemuseum.org.uk/broughttolife/objects/display.aspx?id=4360 

1875: Richard Caton, Liverpool 
first “ECoG” from animals 

Early Electrophysiology 

1842: Du Bois-Reymond, Berlin  
nerve action potentials 

neurons 



Early EEG 

Pravdich-Neminsky, 1913 

Artery pulsation 

Brain potential 

Time marker 

Response to sciatic nerve 
stimulation 

Stimulation signal 

“Danilevsky (1852-1939) … finished his thesis entitled “Investigations into the Physiology of the 
Brain (1877). … He published an extensive textbook of human physiology in 1915. … He saw his high 
hopes unfulfilled as far as the spontaneous electrical activity of the brain was concerned. … He was 
not the only EEG researcher with shattered hopes in the field of psychophysiology”. 
From: Niedermeyer and Schomer, 2011 



Hans Berger, Jena 1924 
First Fourier Analysis of EEG: Berger&Dietsch 1931 

Early EEG 

1969/70: 32/48-channel EEG, “generators” 

Lehmann, 1971 



Early ERPs 

Dawson, Proceedings of the Physiological Society, 1951 



First MEG: Pre-SQUID age 

MCG, 1967/(63) 

Cohen, Science 1967 

MEG, 1968 

Cohen, Science 1968 

MEG pioneers 
MIT 

Alpha Rhythm 



The Fast Evolution of MEG 





-   -   -   -   - 

+  +  +  +  + 

• Apical dendrites of pyramidal cells 

• NOT action potentials (too short-lived and quadrupolar) 

• EEG/MEG: same generators, different sensitivity 

+ 

- 

• ~ 1 Million synapses needed to activate simultaneously 

• Luckily: ~10000 cells per mm2, ~ 1000 synapses per cell 

 => several mm2 can produce measurable signal  

Main Generators of Electrical Activity in the Brain 



“Primary”/”Impressed”  
Current 

“Volume”/”Passive”  
Current 

Current Flow in the Head 



primary  
current, 
“dipole” 

volume  
currents 

EEG/MEG Measurements 

http://www.nmr.mgh.harvard.edu/meg/pdfs/talks/ 

Volume currents affect both EEG and MEG – 
but EEG more than MEG 



http://imaging.mrc-cbu.cam.ac.uk/meg/VectorviewDescription 

The Neuromag Vectorview System 

306 channels in 102 locations 
1 magnetometer and 2 planar gradiometers 

at each location 

Up to 120 EEG electrodes 
(we typically use 70, plus EOG/ECG) MEG sensor layout 



Elekta Neuromag 

Gradiometer | 

“Leadfields” of Sensor Types 

Gradiometer - Magnetometer EEG 

This bit is made up 

The “leadfields” are sensitivity profiles of individual sensors. 
At each source space location, they tell the source orientation  

that produces the strongest signal in that sensor. 

The “right-hand-rule” comes in handy here. 
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Typical EEG/MEG Analysis Pipeline 



Artefacts can be  
 
• non-physiological, i.e. from outside the body (sensor-intrinsic 

noise, line noise, moving objects, vibrations) 
     => Maxfilter (SSS), H/L-Pass-Filtering, SSP, PCA/ICA 

 
• Physiological but non-brain, e.g. eye movements, muscles 
     => SSP, PCA/ICA, H/L-Filtering 

 
• Physiological from the brain, i.e. brain sources that are not of 

interest or not included in your source model 
     => choose appropriate source estimation, regularisation 

Artefacts 

Wisdom: 
It’s always better to avoid artefacts than to correct them 



Maxfilter 

Elekta Neuromag 

Maxmagic: 



Elekta Neuromag 

Maxfilter 

Without With Without With 



Software shielding (Signal Space Projection, SSS) 
By subtracting the outer SSS components from measured signals, the program suppresses artifacts from 
distance sources. 
 
Automated detection of bad channels 
By comparing the reconstructed sum with measured signals, the program can automatically detect if there 
are MEG channels with bad data that need to be excluded from Maxwell-filtering. 
 
Spatio-temporal suppression of artifacts 
By subtracting the reconstructed waveforms from measured signals, the program can identify and suppress 
artifact waveforms which arise close to the sensor array. 
 
Transformation of MEG data between different head positions (“-trans”) 
By transforming the inner components into harmonic amplitudes (i.e. virtual channels), MEG signals in a 
different head position can be estimated easily. 
 
Compensation of disturbances caused by head movements (“-movecomp”) 
By extracting head position indicator (HPI) signals applied continuously during a measurement, the data 
transformation capability is utilized to estimate the corresponding MEG signals in a static reference head 
position. 

Maxfilter 

http://imaging.mrc-cbu.cam.ac.uk/meg/Maxfilter_V2.2  
Maxfilter Manual 

http://imaging.mrc-cbu.cam.ac.uk/meg/Maxfilter_V2.2
http://imaging.mrc-cbu.cam.ac.uk/meg/Maxfilter_V2.2?action=AttachFile&do=view&target=Maxfilter_Manual_v2pt2.pdf


Stable subject Moving subject, 
No compensation 

 

Moving subject, 
with compensation 

 

Maxfilter – movement compensation 

Elekta Neuromag 

Head movement is tracked continuously (well, every 200 ms) via HPI (Head Position 
Indicator) coils 

 
We can take Maxfilter parameters from any time point t, 

and estimate the MEG signals at sensor positions of time point t0 
 

This compensates – to some degree – for spatial variation caused by head movements 





Filtering and Downsampling 

• Choose a “convenient” sampling rate with respect to processing speed and 

storage (usually 250 Hz to 500 Hz ok) 

• We have to sample at 1000 Hz during acquisition because of HPI signals 

• Downsampling can lead to “aliasing” if the data are not filtered appropriately 

(Nyquist theorem) 

• Filtering can reduce (possibly remove) some artefacts such as sensor noise, 

muscle artefacts, line noise. 
 

Aliasing 





Common Artefacts: Eye Blink 



Common Artefacts: Eye Movement to the Right 



Common Artefacts: Heart Beat 



Common Artefacts: Mouth Movement 



Artefacts in EEG and MEG 
Can End Up in Source Space 

Example: Eye Blink 



If  signal and noise have characteristic topographies, several methods can be applied to 

remove (some) noise or extract signals: 

 

• SSP: Signal Space Separation 

 

The following often go under the term “blind source separation”, because the 

topographies are not pre-defined, and found by the methods themselves (under certain 

assumptions): 

 

• PCA: Principal Component Analysis 

• SVD: Singular Value Decomposition 

 

• ICA: Independent Component Analysis 

 

Separating Signal and Noise Components 



You know the noise topography T 

You decompose your data D, such that 

D = a*T + Rest 

You only analyse Rest 
 

This works well with eye-movement and blink artefacts 

 

Note:  

Brain signals whose topographies are highly correlated with T will also be removed 

or attenuated 

 

Signal Space Projection (SSP) 



• Decompose data into orthogonal components T1, T2, etc. (topographies or time 

courses), i.e. data D = a*T1 + b*T2 + …  

• Find the components you don’t like (e.g. correlate highly with EOG and ECG, or 

components that explain little variance) 

• Reconstitute your data only with the “good” components,   

   e.g. D = a*T1 + c*T3 + … if component 2 reflects eye blinks 

 

Also: 

• Components have an order according to the variance they explain (e.g. 

var(T1)>var(T2)>…) 

• Can be used to determine the number of independent components (according to 

specified criteria) 

• Relatively fast (try svd() or princomp() in Matlab) 

 

•Unfortunately: Orthogonality and variance ordering not physiologically plausible 
 

 

 

PCA and SVD 



Example: (De-)mixing of sources in the cocktail party effect 

Independent Component Analysis 

http://www.tqmp.org/Content/vol06-1/p031/p031.pdf 



Basic idea is similar to PCA and SVD: 

Decompose data into components T1, T2, etc. (topographies or time courses), i.e. 

data D = a*T1 + b*T2 + … 

 

But:  

ICA does not produce orthogonal components, 

 and does not assume Gaussianity of signals 

Independent Component Analysis 



Instead, ICA uses other measures of “independence” among sources, e.g. based on 

“mutual information”, “non-Gaussianity”, “kurtosis”, “negentropy” (note: there is 

not “the ICA”). 

 

There is no theoretical proof that ICA’s assumptions are more physiological – the 

proof is in the pudding (i.e. look at your data).  

ICA has been successful in detecting non-random noise sources such as ECG and 

eye blinks. 

 

ICA needs an estimate of the number of sources, and does not order the sources. 

 

ICA can take a while (fast algorithms available). 

Independent Component Analysis 





Data Averaging 

http://imaging.mrc-cbu.cam.ac.uk/meg/IntroEEGMEG 

+ + + + 
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Continuous “raw” data: 
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Averaged data: 
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The necessary number of trials depends on effect size, noise, variability across 
participants, your stats etc. – 

the more the better 
 

For random noise, variance goes down with n, and standard deviation with sqrt(n) 
 

For “one-off” artefacts, amplitude in the average goes down with n 
 

“Robust Averaging” procedures exist (e.g. in SPM) that weigh epochs with an 
estimate of their reliability (e.g. distance to mean) 

 

Data Averaging 



Usually, epochs are excluded from averaging when they exceed some maximum-
minimum criterion 

 
Make sure “chronically bad channels” are excluded from this procedure 

(or there won’t be any data left to average) 
 

Prior to any procedure that combines signals across channels, such as average 
reference, SSP or ICA, bad channels should be removed 

(or signals from bad channels may be projected into the good ones) 
 

Appropriate filtering and artefact correction (e.g. ICA) should be applied beforehand 
(but don’t feel too safe: artefacts may slip through) 

Artefact Rejection 
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Parametric vs Factorial Designs 

Smith&Kutas, Psychophysiol 2015a 
Hauk et al., Neuroimage 2006 

Consider parametric analysis if stimulus variables are continuous 
(still less common in EEG/MEG than in fMRI analysis) 

http://www.ncbi.nlm.nih.gov/pubmed/25141770
http://www.ncbi.nlm.nih.gov/pubmed/16460964




http://link.springer.com/article/10.1007%2Fs10339-009-0352-1/ 

“Brain Rhythms” and “Oscillations” 

Time course and topography may differ 
among different frequency bands 

(and may depend on task, environment, subject group etc.) 



Tallon-Baudry & Bertrand, TICS 1999 

evoked induced 

Evoked and Induced Activity 
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