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MNE software: http://www.martinos.org/mne/

See also: http://www.mrc-cbu.cam.ac.uk/methods-and-resources/imaginganalysis/

The Path to the Source

http://www.martinos.org/mne/
http://www.mrc-cbu.cam.ac.uk/methods-and-resources/imaginganalysis/


Our Goal: 
Brain Movies
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The EEG/MEG Forward Problem

EEG/MEG measure the 
primary sources indirectly

Sensors are differently sensitive to 
different sources

“Leadfield”

Hauk, Strenroos, Treder. In: Supek S, Aine C (edts), “Magnetoencephalography: 
From Signals to Dynamic Cortical Networks, 2nd Ed.”
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The Goal:
Once We Have Stated the Forward Problem,
We Are Ready Address the Inverse Problem



v11 v12

v21 v22

d3 = V11+V21 d4 = V12+V22

d1 =V11+V12

d2 = V21+V22

d1= V11+V12

d2= V21+V22

d3= V11+V21

d4= V12+V22

EEG/MEG

d1= V11+V12+V13+V14 ...

d2= V21+V22+V23+V24 ...

Tomography (CT, fMRI…)

Information is lost during 

measurement

Cannot be retrieved by 

mathematics

Inherently limits spatial resolution

d1

d2

d3

d4
d5 d6

d7

d8

d9

EEG/MEG “Scanning” is not “Tomography”
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In “signal space”, we see a faint shadow of activity in “source space”.

If you are not shocked by the EEG/MEG inverse problem…

… then you haven’t understood it yet.

(freely adapted from Niels Bohr)

M.C. Escher

Why Inverse “Problem”?



What is the solution to

x1 + x2 = 1

Maybe

x1 = 0 ; x2 = 1 ?

x1 = 1 ; x2 = 0 ?

x1 = 1000 ; x2 = -999 ?

x1 = π ; x2 = (1-π) ?

The minimum norm solution is:

x1 = 0.5 ; x2 = 0.5

with (0.52 + 0.52)=0.5 the minimum norm among all possible solutions.

Non-Uniquely Solvable Problem
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The Goal:
Once We Have Stated the Forward Problem,
We Are Ready Address the Inverse Problem

MNE produces solution with minimal power or “norm”:

 2

3

2

2

2

1 jjj 



Examples for Non-Uniqueness

Jensen & Hesse, chap. 7 in “MEG”, OUP 2010, Hansen/Kringelbach/Salmelin (edts.)
See also Krishnaswamy et al. PNAS 2017

A distributed superficial distribution may be indistinguishable from a focal deep source.



Examples for Non-Uniqueness

Hämäläinen & Hari, in Brain Mapping: The Methods (2nd), Elsevier 2002

Different Sources

Field Patterns

Dipole Model

Minimum Norm Estimates

Original Sources

Same Field Patterns

Same Source Estimates



Magnetometers Gradiometers EEG

Minimum Norm Estimate

Example: Visually Evoked Activity ~100 ms



Minimum Norm Estimate

Example: Auditorily Evoked Activity



“Dipole Fitting”

1. Assume there are only a few 

distinct sources

2. Iteratively adjust the location, 

orientation and strength of a 

few dipoles…

3. …until the result best fits the 

data

“Distributed Sources”

1. Assume sources are everywhere (e.g. 

distributed across the whole cortex)

2. Find the distribution of source 

strengths that explains the data…

3. …AND fulfils other constraints

Source Estimation Approaches



Isolated Dipoles

For dipole fits, the forward solutions are computed iteratively for every change of 
dipole location and orientation.

For dipole scans and distributed source methods, forward solutions are pre-computed 
for a large number of sources in a discretised volume or on a discretised surface 
(“leadfield matrix”).



http://www.cogsci.ucsd.edu/~sereno/movies.html

Sometimes “standard head models” are used, when no individual MRIs available.

SPM uses the same “canonical mesh” as source space for every subjects, but adjusts it 

individually.

Volume Conductor/Head Model
e.g. sphere, 1- or 3-compartments from MRI

Source Space,
e.g. grey matter, 3D volume

Distributed Sources: Source Space and Head Model



Normalising (Morphing) Cortical Surfaces

Gramfort et al., NI 2014

Sometimes “standard head models” are used, when no individual MRIs available.

SPM uses the same “canonical mesh” as source space for every subjects, but adjusts it 

individually.



Spatial Sampling of Cortical Surfaces

10.034 vertices, 20.026 triangles of 10 mm2 surface area

79.124 vertices, 158.456 triangles of 1.3 mm2 surface area

Baillet, chap. 5 in “MEG”, OUP 2010, Hansen/Kringelbach/Salmelin (edts.)



Head Modelling – Tissue Compartments

Ilmoniemi and Sarvas, “Brain Signals”, MIT 2019

Goldenholz et al., HBM 2009



Head Models With Different Levels of Detail

Baillet, chap. 5 in “MEG”, OUP 2010, Hansen/Kringelbach/Salmelin (edts.)

Spheres Boundary Element Model
(BEM)

Finite Element Model
(FEM)



Conclusion – Head Modelling

3-compartment BEM models are currently state-of-
the-art for EEG/MEG source estimation.

Single-shell approximations are common for MEG.

More detailed head models may increase accuracy, 
but require more accurate data and information, 
such as accurate MRI segmentations and conductivity 
values. (see e.g. Vorwerk et al., BioMeg Eng Online 2018) for Fieldtrip FEM pipeline)

There is no right or wrong, there are only different 
approximations – know your limits.



Practice



Coregistration of EEG/MEG and MRI Spaces

Hari & Puce, “MEG-EEG Primer”, OUP 2017



Accurate Coregistration Is Important

Coregistration errors affect the forward model, and therefore everything that follows.
For example, connectivity analysis:

Chella et al., NI 2019

3 levels of coregistration error
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Coordinate

Transformation

Coregistration of EEG/MEG and MRI Spaces





Spatial resolution depends on:

modeling assumptions

number of sensors (EEG/MEG or both)

source location

source orientation

signal-to-noise ratio

head modeling

=> difficult to make general statement

Spatial Resolution of Source Estimation



With n sensors: 

-> n independent measurements

-> n independent parameters estimable 

-> at best separate activity from n brain regions

Sensors are not independent, data are noisy: ~ 50 degrees of freedom

Volume of source space:

Sphere 8cm minus sphere 4 cm: volume ~1877 cm3

“Resel”: 38 cm3 -> 3.43 cm3

Spatial Resolution – A Naïve Estimate

SVD of Leadfields

EEGMEG
MEG
EEG



The “Blurry Image” Analogy



The Superposition Principle
An “Assumption-Free” Interpretation of Linear Methods

Microscopy
Astronomy

https://en.wikipedia.org/wiki/Point_spread_function



If you know the behaviour  for point sources, 

you can predict the behaviour for complex sources
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Linear Methods – Superposition Principle



Linear Methods – Superposition Principle

Hauk, Strenroos, Treder. In: Supek S, Aine C (edts), “Magnetoencephalography: 
From Signals to Dynamic Cortical Networks, 2nd Ed.”

Superposition In Source Space

Example Point-Spread Functions

Great! Good. :-(



Resolution Matrix
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23

Forward Problem

𝐝 = 𝐋𝐣

1

1

2

23

Linear Inverse Problem

Ƹ𝐣 = 𝐆𝐝

Ƹ𝐣 = 𝐆𝐋𝐣 ≝ 𝐑𝐣

Relationship between estimated and true source distribution.



𝑹 − 𝑰 𝟐 =min

The Best Resolution Matrix

ො𝐬 = 𝐑𝐬

The closer R is to the identity matrix, the closer our estimate is to the true source.

Therefore, let us minimise the difference between R and the identity matrix in the 
least-squares sense:

Once again, we obtain the minimum-norm least-squares solution:

𝑮𝑴𝑵 = 𝐋𝑇 𝐋𝐋𝑇 −1

Its resolution matrix 𝑹𝑴𝑵 = 𝐋𝑇 𝐋𝐋𝑇 −1𝐋 is symmetric.



Cross-Talk Function 
(CTF)

Point-Spread Function
(PSF)

How other sources may affect the      

estimate for this source

How this source affects 

estimates for other sources

Spatial Resolution: 
Point-Spread and Cross-Talk/Leakage

Hauk, Strenroos, Treder. In: Supek S, Aine C (edts), “Magnetoencephalography: 
From Signals to Dynamic Cortical Networks, 2nd Ed.”



Good

PSFs and CTFs for Some ROIs
For MNE, PSFs and CTFs turn out to be the same



Less good

PSFs and CTFs for Some ROIs
For MNE, PSFs and CTFs turn out to be the same
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“localisation error”

“spatial dispersion”

PSF or CTF

It’s not just peak localisation that counts, 

but also spatial extent of the distribution.

Quantifying Resolution From PSFs and CTFs
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Resolution Metrics For PSFs/CTFs

• MEG+EEG: Elekta Vectorview (360+70 channels), Wakeman & Henson open data set

• Whitened leadfields and data to combine sensor types

• Methods Comparison: 

• L2-MNE

• depth-weighted L2-MNE

• dSPM

• sLORETA

• LCMV beamformer (noise covariance matrix from baseline intervals)

• Resolution Metrics: 

• Peak Localisation Error

• Spatial Dispersion (extent)



Sensitivity Maps
RMS of Leadfield Columns

EEG
70 electrodes

MEG
102 mags + 204 grads

EEG+MEG
102 mags + 204 grads



Comparing EEG+MEG and MEG-only

Hauk/Stenroos/Treder, bioRxiv 2019 | see also Molins et al., NI 2008



Comparing Estimators: Localisation Error

Hauk/Stenroos/Treder, bioRxiv 2019 | see also Hauk/Wakeman/Henson, NI 2011



Comparing Estimators: Spatial Extent

Hauk/Stenroos/Treder, bioRxiv 2019 | see also Hauk/Wakeman/Henson, NI 2011



Comparing Estimators: Relative Amplitude

Hauk/Stenroos/Treder, bioRxiv 2019 | see also Hauk/Wakeman/Henson, NI 2011



?

?

Desikan-Killiany Atlas parcellation

Localisation Bias Has Consequences for ROI analysis



Anatomical Parcellations May Not Be Optimal For 
EEG/MEG

Farahibozorg, Henson, Hauk, NI 2018



Adaptive Parcellations For EEG/MEG

Farahibozorg, Henson, Hauk, NI 2018



Noise and Regularisation
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Stable Instable

(In)Stability – Sensitivity to Noise

Similar topographies 

are difficult to 

distinguish, especially 

in the presence of noise.

Thanks to Matti Stenroos.



Noise and Regularization

Noise: activity not accounted for by the model.
Hence it depends on the model.

Explaining the data 100% may not be desirable –
some of the measured activity is not produced by 

sources in the model.

Explaining noise may require larger amplitudes in 
source space then the signal of interest: 

Overfitting may seriously distort the solution 
(“variance amplification” in statistics/regression).



(In)Stability – Sensitivity to Noise

2 0
0 2

𝐼𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 1/2 0
0 1/2

2 1
1 2

𝐼𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 2/3 −1/3
−1/3 2/3

2 1.999
1.999 2

𝐼𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 500.13 −499.87
−499.87 500.13

No linear dependence between rows/columns:

Some linear dependence:

High linear dependence:



Some channels are noisier than others
They should get different weights in your analysis

Sensors are not independent
=> Sensors that carry the same information should be downweighted relative to more 

independent sensors

(Full) Noise Covariance Matrix
(Diagonal) Noise Covariance Matrix

(contains only variance for sensors)

Noise covariance



Leaving Variance Unexplained

𝐋𝐬 = 𝐝 + 𝛆 ⇒ 𝐋𝐬 − 𝐝 𝟐 <= e, s.t. 𝐬 𝟐 =min

This is equivalent to minimising the cost function

𝐋𝐬 − 𝐝 𝟐 + λ 𝐬 𝟐, λ>0

We can give sensors different weightings, 

e.g. based on their noise covariance matrix C:

𝐂−1 𝐋𝐬 − 𝐝 𝟐 = 𝐋𝐬 − 𝐝 𝑪
𝟐 = e

𝐋𝐬 − 𝐝 𝑪
𝟐+ λ 𝐬 𝟐, λ>0

𝑮𝑴𝑵 = 𝐋𝑇 𝐋𝐋𝑇 + 𝜆𝐂−1 −1

𝜆 (Lambda) is the regularisation parameter that determines how much variance 
we want to leave unexplained.



Whitening and Choice of Regularisation Parameter

𝑮𝑴𝑵 = 𝐋𝑇 𝐋𝐋𝑇 + 𝜆𝐂−1 −1

can also be written as

𝑮 ෪𝑴𝑵 = ሚ𝐋𝑇 ሚ𝐋ሚ𝐋𝑇 + 𝜆𝐈 −1

where ሚ𝐋 is the “whitened” leadfield 𝐂−1/2𝐋, 
and scaled such that trace(ሚ𝐋ሚ𝐋𝑇)=trace(𝐈).

ሚ𝐋 and λ can now be interpreted in terms of 
signal-to-noise ratios.

A reasonable choice for λ is then the 
approximate SNR of the data (e.g. in MNE 

software).



Trade-off norm-variance, smoothness
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Fuchs et al., J Clin Neurophys 1999 

Source at fixed excentricity 71% (60mm)



Regularisation: Bayesian L2

Minimise cost function

𝐹 𝐬 = 𝛽 𝐋𝐬 − 𝐝 𝑪
𝟐-2log 𝑝 𝐬

If we assume 𝑝 𝐬 is Gaussian

𝑝 𝐬 =
𝛼

2𝜋

𝑵/𝟐

𝑒𝑥𝑝 −
𝛼

2
𝐬 𝟐

This leads to the cost function

⇒ 𝐹 𝐬 = 𝛽 𝐋𝐬 − 𝐝 𝑪
𝟐+𝛼 𝐬 𝟐 ~ 𝐋𝐬 − 𝐝 𝑪

𝟐+
𝛼

𝛽
𝐬 𝟐

=> Equivalent to cost function for the L2 minimum-norm solution.



Regularisation: Bayesian L1

Minimise cost function

𝐹 𝐬 = 𝛽 𝐋𝐬 − 𝐝 𝑪
𝟐-2log 𝑝 𝐬

If we assume 𝑝 𝐬 is Laplacian

𝑝 𝐬 =ෑ

𝒋=𝟏

𝑵
1

2𝑏
𝑒𝑥𝑝 −

1

𝑏
sj

this leads to the cost function

⇒ 𝐹 𝐬 = 𝛽 𝐋𝐬 − 𝐝 𝑪
𝟐+

2

𝑏
𝐬 𝟏

=> Equivalent to cost function for the L1 minimum-norm solution.


