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“Brain Rhythms” and “Oscillations”

Time course and topography may differ

among different frequency bands
(and may depend on task, environment, subject group etc.)
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Cahn et al., Cogn Proc 2010, http://link.springer.com/article/10.1007%2Fs10339-
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http://link.springer.com/article/10.1007%2Fs10339-009-0352-1/

“Brain Rhythms” and “Oscillations”

Process 1 Process 2 Process 3

a Local activity

b Coherent
oscillations
(spectral
fingerprints)

C Canonical
computations

Computation 1 Computation 2 Computation 3 Computation 4

= e == mm Frequency i, ii, iii, iv, v Cognitive variables

Siegel et al., Nat Nsc, 2012, https://www.nature.com/articles/nrn3137



https://www.nature.com/articles/nrn3137
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Periodic Signals

A periodic signal repeats itself with a period T.

This is the case, for example, for sine and cosine functions:

s(t) =ax*sin(2rf xt+0)
a: amplitude
f: frequency
6 : phase

/(c:os 8, sin 8)

on In radians (2 ~ 360 degrees):
sin cos(x + 2m) = cos(x)

=Y

sin(x + 2m) = sin(x)

In degrees :
cos(x + 360) = cos(x)
sin(x + 360) = sin(x)

On a unit circle, a 360° angle
corresponds to a circumference
of 2*pi

https://www.youtube.com/watch?v=z82|6u4DFTo



https://www.youtube.com/watch?v=z82I6u4DFTo

Polar Representation Of Periodic Signals

Euler’s Formula

“Complex” numbers can capture the two axes of the coordinate system for the circle around which
the vector rotates periodically — this is rather abstract but simplifies the notation enormously.
They capture amplitude, frequency and phase in a single (complex) number.

e = cos(0) + i *sin(0) i=/—1
Therefore:
cos(0) = real(e™?)
sin(0) = imag(e~%9)

An oscillation at a particular frequency can be described in a
“polar representation”:

g”" (cos 6, sin B)
axe ! g N
a: amplitude E

2m: circumference of unit circle
f: frequency
t: time

X
real part



The Polar Representation Of Periodic Signals

Convenient To Compare Periodic Signals

A Imaginary axis B |maginary axis
[}(l,)ﬁ} ::
(%2,y2) T
A} Real axis 1 Real axis
signal 1 =x1 + iyi=Aie” signal 1 * conj(signal 2) =
signal 2 = x2 + iy2=Aze (X1 4 iy1) * (x2 - iy2) = (oxa+yryz) + ilyixe-yaxi) =

Are® * fe = ArAset )

FIGURE 2 | Using polar coordinates and complex numbers to represent signals in the frequency domain. (A) The phase and amplitude of two signals. (B)
The cross-spectrum between signal 1 and 2, which comesponds to multiplying the amplitudes of the two signals and subtracting their phases.

Bastos & Schoeffelen, Front Syst Nsc 2016
https://www.frontiersin.org/articles/10.3389/fnsys.2015.00175/full
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https://www.frontiersin.org/articles/10.3389/fnsys.2015.00175/full

Sine and Cosine Are Orthogonal to Each Other
(at a given frequency)

sine
cosine

fsin (f *x) cos(f *x)dx =0




Sine/Cosine At Integer Frequency Intervals Are Orthogonal
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Entering the Frequency Domain:
Fourier Transform in Words

What you want:
You've got a signal consisting of N sample points (equidistant).
You want to know which frequencies contribute to the signal, and how much.

In other words:
You want to describe your signal as a linear combination of sines and cosines,
ideally of orthogonal basis functions made up of sines and cosines.

What you’ve got:
With N samples, you can estimate at most N independent parameters.

You cannot estimate frequencies above half of the sampling frequency SF
(Nyquist).

For a given frequency, sine and cosine are orthogonal,
I.e. 2 basis functions per frequency.



The Fourier (De-)Composition

Decomposing signals
into sine/cosine terms

Amplitude

Approximating a step function m
with Fourier terms FT m
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Motivation for Time-Frequency Analysis

Fourier Transform assumes sines and cosines with constant amplitudes
across the whole time series (“stationarity”).

But what does an FFT mean for a signal like this?
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Motivation for Time-Frequency Analysis

You could run separate FFTs for different (sliding) time windows:

TN
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But different window sizes are more or less optimal for different frequencies.
Run different FFTs with different window sizes for different frequency ranges? Ouff.



Time-Frequency Analysis: Wavelets (“little waves”)

Wavelets provide an optimal trade-off between frequency and time resolution.

RADIX-2 TUNABLE-Q WAVELET TRANSFORM
WAVELET: SCALES 4-17
N =256, Q = 4.00,r =3.00

i Wavelets are getting
Wl “broader” with
Mv;m decreasing frequency
’; -
g W
Ul —
L W : :
AN Time resolution
It AVAVAVAVA S decreases as
e VAVAVAVAV S e
L NN A frequency decreases

0 50 100 150 200 250
TIME (SAMPLES)

Wavelets are convolved with the data to give instantaneous amplitude and phase
estimates for different frequency ranges.



Time-Frequency Analysis: Wavelets

Wavelet Transform Time-Frequency Power
Trade-off between time and frequency resolution
'y s(t)
freq.
convolution
=

Tallon-Baudry & Bertrand, TICS 1999
https://pubmed.ncbi.nlm.nih.gov/10322469/



https://pubmed.ncbi.nlm.nih.gov/10322469/

Basic Principals of Frequency Filtering

Where have we seen this before?

Time-domain and frequency-domain filtering are two sides of the same coin:

One type of frequency-domain filtering corresponds to one type of time-domain filtering.

Lowpass  Highpass Bandpass

1.
Frequency domain \
I —— : i
FrequenCy <m—p-
Time domain /\ /\
5 NN VRV

Tim e G—

https://uk.mathworks.com/matlabcentral/fileexchange/51155-time-domain-filtering-vs-frequency-domain-filtering-in-images



https://uk.mathworks.com/matlabcentral/fileexchange/51155-time-domain-filtering-vs-frequency-domain-filtering-in-images
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Evoked and Induced Rhythmic Activity

evoked induced

evoked induced

Stimulus ! '
averaging I

onset EEB EES
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Tallon-Baudry & Bertrand, TICS 1999
https://pubmed.ncbi.nIm.nih.gov/10322469/



https://pubmed.ncbi.nlm.nih.gov/10322469/

Effect of Number of Cycles

1 cycle
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A Very Rough Rule of Thumb

One needs at least 2 cycles of a frequency to get a meaningful estimate
(of amplitude, phase, etc.)

Duration (in ms) of 2 cycles at frequency f (in Hz): 2*1000/f
1 Hz: 2000ms=2s

10 Hz: 200 ms =1/5s

40 Hz: 50 ms =1/20s

100 Hz: 20 ms =1/50 s

The lower the frequency, the longer the time window required to estimate the signal.



When brain rhythms aren’t “rhythmic” —the example of beta “oscillations”
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https://pubmed.nchi.nlm.nih.gov/27400290/



https://pubmed.ncbi.nlm.nih.gov/27400290/




Single-Trial Analysis and Source Estimation

Computing the power of a signal is a non-linear transformation, and
“rectifies” the data (i.e. all values are >=).
Some analyses cannot be performed with these data!

For linear methods, their sequence doesn’t matter: 2*(3-4)=2*3+2*(-4).
This is not the case for non-linear methods: (3-4)? # 32 + (-4)%.

Spectral power is non-linear!
If you want the average power, you have to compute power for individual
epochs first, then average.

If you want power in source space, you have to apply source estimation to
individual epochs.

The noise level and a priori knowledge about sources will be very different
for single trials compared to the average.

For example, a single/multiple dipole model may be justified for the average (e.g. auditory P1
etc.), but not for single trials.




Power Estimation Changes the Time Course

sine(x)
sine?(x)

For example, the frequency spectrum for sine(x) and sine?(x) are very different.






Brain Connectivity

Structural/Anatomical Connectivity:
Hardware links between brain regions
(e.g. DWI/DTI).

Functional Connectivity:
Statistical dependencies of activation between brain regions
(e.g. correlation, or spectral measures such as phase-locking and coherence).

Effective Connectivity:
Causal interactions of activation between brain regions
(Granger Causality, Dynamic Causal Modelling).

For example:
http://journal.frontiersin.org/article/10.3389/fnsys.2015.00175/full
http://www.sciencedirect.com/science/article/pii/S0165027012000817
http://www.ncbi.nlm.nih.gov/pubmed/21477655
http://online.liebertpub.com/doi/abs/10.1089/brain.2011.0008



http://journal.frontiersin.org/article/10.3389/fnsys.2015.00175/full
http://www.sciencedirect.com/science/article/pii/S0165027012000817
http://www.ncbi.nlm.nih.gov/pubmed/21477655
http://online.liebertpub.com/doi/abs/10.1089/brain.2011.0008

Taxonomy Of Popular Functional Connectivity Methods

Functional connectivity

Non-directed Directed

=

3

]

o

o]

Cross-correlation, g

Granger causality 5

Coherence, L
Phase Locking Value E
Pairwise Phase Consistency %
Phase Slope Index S

Parametric and Monparametric Q

Granger Causality a

o

3

ma

=

FIGURE 1 | A taxonomy of popular methods for quantifying functional
connectivity.

Bastos & Schoeffelen, Front Syst Nsc 2016
https://www.frontiersin.org/articles/10.3389/fnsys.2015.00175/full



https://www.frontiersin.org/articles/10.3389/fnsys.2015.00175/full
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“Brain Connectivity”

Brain Connectivity

Data-Driven

Seed-based

Functional decomposition Clustering

Soft-
Temporal . Information
- i Spectral )

Correlation ) Theoretic

Mutual General
Information Svnchronisation J

Granger Causality Phase Slope
. (Auto Regression) Index
(Amplitude) ‘

Temporal Bayesian Hierarchical Computin
Model-
based

Precedence Modeling
= (Lror )
Neural
Dynamic Causal Modelling -

Partitioning

Linear

(Effective Connectivity) K-means

Modelling Theoretic
Non-linear GC
Multivariate Spectral GC
(Directed Transfer Function OR

From Farahibozorg, PhD Thesis 2018
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“Synchrony” —a common concept of functional connectivity

s ~
A Phase synchronization at 0 phase at frequency £ -
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ROI or channel 1 =—»
n [i]
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O m MO0 0 Im 0 mn Im 0 m In
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e.g., Bastos & Schoeffelen, Front Syst Nsc 2016
https://www.frontiersin.org/articles/10.3389/fnsys.2015.00175/full



https://www.frontiersin.org/articles/10.3389/fnsys.2015.00175/full

(Magnitude-Squared) Coherence

For two signals x(t) and y(t) at frequency f:

|Gxy (D)
Gx(f)Gyy(f)

ny(f) =

G, (f) is power at f of x(t).
|ny (f)|?is cross — spectral density of x(t) and y(t).
Gyy (f) is also called “Coherency” (and can be a complex number).

(MS-)Coherence yields the shared variance of two signals at a given frequency.

Cxy(f)=1: Signals perfectly coherent at frequency f.
Cxy(f)=0: Signals not coherent at all at frequency f.

This looks a bit like a correlation — but in this case it depends on amplitude and
phase of the signals at frequency f.



(Magnitude-Squared) Coherence

Low Coherence High Coherence

between two signals.

Every vector represents the %
amplitude and phase difference /

Coherence takes amplitude as well as phase consistency into account.
It can be interpreted as “amplitude-weighted phase-locking value”, i.e. trials with low
amplitudes are given lower weight than those with higher amplitudes.

e.g., Bastos & Schoeffelen, Front Syst Nsc 2016
https://www.frontiersin.org/articles/10.3389/fnsys.2015.00175/full



https://www.frontiersin.org/articles/10.3389/fnsys.2015.00175/full

Phase-Locking — Use Only Phase, Ignore Amplitude

s(t) =ax*sin(2nft + 0)
a: amplitude
f: frequency
6 : phase

Phase difference in frequency domain Phase difference in time domain
YA

/ (cos B, sin 8)

=Y

Lachaux et al., HBM 1999: http://www.ncbi.nlm.nih.gov/pubmed/10619414



http://www.ncbi.nlm.nih.gov/pubmed/10619414

Phase-Locking vs Coherence

Low Coherence

Every vector represents the
amplitude and phase difference
between two signals.

Low Phase-Locking
We are not interested in
amplitude, and normalise all
vectors to unit length.
The average vector measures the
phase-consistency across signals
(phase-locking value, PLV).

High Coherence

dh
NI

High Phase-Locking

dh
>




Different Types of Phase-Locking

We ignore amplitudes, and are only interested in phase-relationships between two
signal at a frequency f.

Inter-Trial Phase-Locking Inter-Regional Phase-Locking
Trial 1 Region
Trial 2 Region
Does the phase at a particular frequency Does the phase difference between two regions
remain stable across trials with one region? at a particular frequency
(not connectivity) remain stable across trials with one region?

(connectivity)




Sample Size / SNR Bias

Many trials, noise Few trials, noise

Many connectivity metrics are positively biased (e.g. Coherence with values between 0 and
1), i.e. one gets positive values even in the presence of pure noise.

Importantly, the metric depends on the number of trials.

= Plot metric for baseline data and different trials counts in your own data

= Equalise trials counts between conditions

: Basel i ne Corre Ction A Coherence as a function of trial number B Granger causality as a function of tral number c PPC as a function of trial number
P b
g ? 6 £
5 £ k3
This effects is relatively small £ . o
~ . ; ok zw ?‘; 3
4 & K]
for ~>50 trials:
= 5‘ s r; 25
o . S, -
e — e s
aaaaaaaaaaaa ks Number of trials Nurnber of trials

FIGURE 10 | Sample size bias for coherence and Granger causality estimates. (A-C) For each respective metric, simulations based on 5, 10, 50, 100, and
500 trials wera run, and coherence (A), Granger causality (B), and PPC (C) were calculated. Each panel reflacts the average + 1 standard deviation across 100

realizations Bastos & Schoeffelen, Front Syst Nsc 2016
https://www.frontiersin.org/articles/10.3389/fnsys.2015.00175/full



https://www.frontiersin.org/articles/10.3389/fnsys.2015.00175/full

Bivariate Functional Connectivity Is Relatively Easy To Compute - And Therefore
Analyses

|II

Suitable For Exploratory “All-To-Al

Gramfort et al., NI 2014
https://www.sciencedirect.com/science/article/pii/S1053811913010501



https://www.sciencedirect.com/science/article/pii/S1053811913010501

Cross-Frequency Coupling

Power
to
power

Phase
to
phase

Phase
to
‘equency

Phase
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power

NN\

/

Jensen & Colgin, TICS 2007




For Example: Theta-Gamma Coupling

(a) (b)

Neural code for Neural code for
representation A representation B

A subset of

firing pyramidal
neurons represents

/ a memory item
C

fgamma = 30-150 Hz fiheta = 4-8 Hz

TRENDS in Cognitive Sciences

Jensen & Colgin, TICS 2007

Figure 2. Models proposing computational roles for cross-frequency interactions between theta and gamma oscillations by means of phase
coding. (a) In a model for working memory, individual memory representations are activated repeatedly in every theta cycle [10] (reviewed in
Ref. [11]). Each memory representation is represented by a subset of neurons in the network firing synchronously. Because different
representations are activated in different gamma cycles, the gamma rhythm serves to keep the individual memories segmented in time. The
number of gamma cycles per theta cycle determines the span of the working memory. (b) A model accounting for theta phase precession in
rats. As a rat advances through an environment, positional information is passed to the hippocampus. This activates the respective place cell
representations, which provokes the prospective recall of upcoming positions. In each theta cycle, time-compressed sequences are recalled:
one representation per gamma cycle. Consider the firing of a cell participating in representation E. As the rat advances, this cell fires earlier in
the theta cycle, thus accounting for phase precession. According to this scheme, the number of gamma cycles per theta cycle is related
guantitatively to the phase precession [13].



Time-Resolved Connectivity

Spectral connectivity measures can be computed for separate time windows,
or they can be computed continuously using wavelets or Hilbert transform
(subject to general trade-off between frequency and time resolution)
RADIX-2 TUNABLE-Q WAVELET TRANSFORM

WAVELET: SCALES 4-17
N =256, Q=4.00,r=3.00
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Functional Connectivity of Resting State Activity

(“Hilbert”) Envelope
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Hipp et al., Nat Nsc 2012, https://www.nature.com/articles/nn.3101



https://www.nature.com/articles/nn.3101

Functional Connectivity of Resting State Activity

L Frontoparietal

L

_ Visual

B ; p 2 " F __
&

Brooks et al., PNAS 2011, https://www.pnas.org/doi/10.1073/pnas.1112685108
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Directed Functional Connectivity

Phase-Slope Index (PSl):
For signals with a stable time delay, the phase in the frequency domain should depend linearly on frequency

Nolte et al, Phys Rev Let 2008, http://doc.ml.tu-berlin.de/causality/
Basti et al., NI 2018, https://www.sciencedirect.com/science/article/pii/51053811918301897

) @ phase difference between driver
Driver and receiver in the frequency

domain

E > A
: S(f4+df) oo
: 2ad fr :
P o(f) [ i
. I i S
time delay 7 >
f f+df

Basti et al., J Serb Soc Comp Mech 2017
https://www.scopus.com/record/display.uri?eid=2-s2.0-85044605749&origin=inward



http://doc.ml.tu-berlin.de/causality/
https://www.sciencedirect.com/science/article/pii/S1053811918301897
https://www.scopus.com/record/display.uri?eid=2-s2.0-85044605749&origin=inward
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Phase Slope Index (PSI)

B Sources which lead V1 (FDR<0.01)
B Sources which follow V1 (FDR<0.01)

A-band, HCP resting state data

Basti et al., Neuroimage 2018
https://www.sciencedirect.com/science/article/pii/S1053811918301897



https://www.sciencedirect.com/science/article/pii/S1053811918301897

Directed Functional Connectivity

Auto-regressive models, Granger Causality:

...in the time domain:

Predict the future of a signal based on the past of its own
and other signals

...in the frequency domain:
- Partial Directed Coherence
- Directed Transfer Function

Bastos & Schoeffelen, Front Syst Nsc 2016,
https://www.frontiersin.org/articles/10.3389/fnsys.2015.00175/full

Greenblatt et al., ] Nsc Meth 2012,
https://www.sciencedirect.com/science/article/pii/S0165027012000817

Haufe et al. NI 2013, https://www.sciencedirect.com/science/article/pii/S1053811912009469



https://www.frontiersin.org/articles/10.3389/fnsys.2015.00175/full
https://www.sciencedirect.com/science/article/pii/S0165027012000817
https://www.sciencedirect.com/science/article/pii/S1053811912009469

And Beyond...

Most of the previously introduced measures are spectral measures,
i.e. they are computed for specific frequencies (or frequency bands).

They rely on the assumption that brain signals can meaningfully be
decomposed into “oscillations” or “frequency bands”.

This is a big assumption, and may not be the case for all modalities,
stimuli, tasks etc., or may not even be true in general.

Therefore...



Non-Spectral and Effective Connectivity

Granger Causality: Is one time series useful to predict another?
X(t) Granger-causes y(t) if past values of x(t) add information to past values
of y(t) for predicting future values of y(t).

http://www.scholarpedia.org/article/Granger causality
Multivariate Granger Toolbox: http://www.sussex.ac.uk/sackler/mvgc/
http://journal.frontiersin.org/article/10.3389/fnsys.2015.00175/full

Structural Equation Modelling (SEM):
Models covariance structure of brain activation across brain regions (e.g.
“path analysis”).

Dynamic Causal Modelling (DCM):
Models brain dynamics across regions as differential equations, in
combination with Bayesian parameter/model estimation.

http://www.scholarpedia.org/article/Dynamic causal modeling



http://www.sussex.ac.uk/sackler/mvgc/
http://www.sussex.ac.uk/sackler/mvgc/
http://journal.frontiersin.org/article/10.3389/fnsys.2015.00175/full
http://www.scholarpedia.org/article/Dynamic_causal_modeling

Multi-Variate and Multi-Dimensional Connectivity

Currently, most connectivity methods use one time course per ROl. However, brain activity is
multivariate, and there is potentially a lot of information lost by collapsing across vertices or
voxels. “Multi-dimensional” methods are now emerging.

Multivariate PSI

N

e — time series

r \ W‘f‘i / B Components of source

Bivariate PSI

Time series along the M Time series along the
direction found by canonical direction found by maximization
correlation analysis of imaginary part of coherency

Basti et al., NI 2018, https://www.sciencedirect.com/science/article/pii/S1053811918301897, Basti/Nili et al., NI 2020, https://www.sciencedirect.com/science/article/pii/S105
Anzellotti & Coutanche, T Cogn Sci 2018, https://pubmed.nchi.nlm.nih.gov/29305206/. Basti et al., PLoS 2019, https://journals.plos.org/plosone/article/comments?id=10.1371,

EEG/MEG:
Rahimi et al. 2022 & 2023: https://www.biorxiv.org/content/10.1101/2022.05.21.492913v1, https://www.biorxiv.org/content/10.1101/2023.01.19.524690v1



https://www.sciencedirect.com/science/article/pii/S1053811918301897
https://www.sciencedirect.com/science/article/pii/S1053811920306650
https://pubmed.ncbi.nlm.nih.gov/29305206/
https://journals.plos.org/plosone/article/comments?id=10.1371/journal.pone.0223660
https://www.biorxiv.org/content/10.1101/2022.05.21.492913v1
https://www.biorxiv.org/content/10.1101/2023.01.19.524690v1

Spatial Resolution And Leakage Can Confound
Connectivity Measures




Field Spread / Point Spread

Connectivity between two Connectivity between two
regions may reflect cross-talk regions may reflect cross-talk
from one of the regions from a third region

Some connectivity measures can rule out “zero-lag” connectivity
(but they are then also insensitive to real zero-lag connectivity)



Field Spread / Point Spread

Connectivity between two regions
may reflect cross-talk from several
other regions

This is bad, and there is not much you can do —
except getting your model right in the first place, or use whole-brain analysis.



Leakage Can Produce Spurious Connectivity

(also at zero-lag)

Postcentral Low Specificity Pars- Orbitalis/ Triangularis Low Specificity

SMG High Sensitivity  Insula Low Sensitivity
a

True Connectivity Zero-lag Measures Non-Zero-Lag Measures

S 50 7

Farahibozorg, Henson, Hauk, NI 2018, https://pubmed.ncbi.nIm.nih.gov/28893608/

See also:
Palva et al., NI 2018, https://pubmed.ncbi.nlm.nih.gov/29477441/

Colclough et al. NI 2015, https://pubmed.ncbi.nlm.nih.gov/25862259/



https://pubmed.ncbi.nlm.nih.gov/28893608/
https://pubmed.ncbi.nlm.nih.gov/29477441/
https://pubmed.ncbi.nlm.nih.gov/25862259/
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One Possibility: Remove Zero-Lag Connectivity

Orthogonalisation of time courses, Partial regression

a x(t) sy b
|“I'lli“il\lil\(|’l"‘lmll'@.nIJJMM,JII'JI@!.npllhlth
. HHHHI[HHIU TR rime
Bivariate: IJ IY(t\.ﬂI o

Bandpass

Hipp et al., Nat Nsc 2012, https://www.nature.com/articles/nn.3101

Symmetric, multivariate orthogonalisation
¥ ’ & Gram-Schmidt orthogonalisation
(Brookes et al,, 2012a)

e 3 Razare"'-, b\L
. Y

Multivariate:
: 2. Adjust lengths
Starting vectors Results depend on
’ B chaice of seed

L

-'-_' ."._. l.'—-,
T . Treen
4. Repeat

1. Whiten dara ro find closest
orthonormal matrix

Colclough et al., NI 2015, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528074/



https://www.nature.com/articles/nn.3101
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528074/

Functional Connectivity of Resting State Activity

(“Hilbert”) Envelope
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Correlation Correlation Correlation

Hipp et al., Nat Nsc 2012, https://www.nature.com/articles/nn.3101



https://www.nature.com/articles/nn.3101

Another Possibility To Remove “Zero-Lag” Connectivity

Imaginary Part of Coherency

In spectral connectivity measures like Coherence, only use the imaginary part of the
signal, which is unaffected by zero-lag connectivity (phase differences of zero are only

represented in the real part).

Ewald et al., NI 2012, https://pubmed.ncbi.nlm.nih.gov/22178298/
Pascqual-Marqui, arXiv 2007a and 2007b, https://arxiv.org/abs/0706.1776, https://arxiv.org/abs/0711.1455

Note: “Non-zero-lag methods” may also ignore true zero-lag connectivity, e.g. for
bilateral sources — one may through out the child with the bath water.



https://pubmed.ncbi.nlm.nih.gov/22178298/
https://arxiv.org/abs/0706.1776
https://arxiv.org/abs/0711.1455

Leakage and Reliability of Functional Connectivity Methods

Group-level repeatability

Within-subject consistency

Between-subject consistency
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Colclough et al., Neuroimage, 2016
https://pubmed.ncbi.nim.nih.gov/27262239/



https://pubmed.ncbi.nlm.nih.gov/27262239/

Spatial Resolution / Leakage:
Point-Spread and Cross-Talk

Cross-Talk Function Point-Spread Function
(CTF) (PSF)

+1

How this source affects

How other sources may affect the
estimates for other sources

estimate for this source

Hauk, Stenroos, Treder, Neuroimage 2022
https://www.sciencedirect.com/science/article/pii/S105381192200299

3



https://www.sciencedirect.com/science/article/pii/S1053811922002993

PSFs and CTFs for Some ROls

For MNE, PSFs and CTFs turn out to be the same




PSFs and CTFs for Some ROls

For MNE, PSFs and CTFs turn out to be the same




Localisation Bias Has Consequences for ROl analysis
PSFs/CTFs Can Tell You How It Looks Like

Desikan-Killiany Atlas parcellation



Original Parcellation

Modified Parcellation

Adaptive cortical parcellation based on resolution matrix

Parcellation

Desikan-Killiany
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https://pubmed.ncbi.nlm.nih.gov/28893608/




Thank you.

Please don’t forget to provide feedback:
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