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Overview

 Why representational similarity analysis?



Linear classification: anything missing?
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Linear classification: anything missing?
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Need a richer characterisation of the stimulus representations.



One step further: how to relate brain
representations to subjective experience?




Relate brain and subjective experience
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Relate brain and subjective experience
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Overview

e Distance measures



Euclidean distance

Straight-line distance between two patterns in Euclidean space

Voxel 3

Image from Alex Walther
RSA workshop 2015




Correlation distance

1 — correlation

Correlation = cosine of the angle between normalised patterns
1

Voxel 3

Image from Alex Walther
RSA workshop 2015




Linear discriminant t value (LDt)

The default distance measure used in the RSA toolbox.

It has two desired properties:

1. Multivariately noise normalised
2. Cross-validated



Noise normalisation

Noise normalisation of the fMRI response patterns
increases the reliability of the estimated pattern distances.

Univariate:
Divide each voxel’s beta weight by its standard deviation
- t value

Multivariate:

Multiply each pattern with the inverse of the (square-
rooted) covariance matrix = Mahalanobis distance



Cross-validated distance measures

Noise = distance measures are positively biased.

Cross-validated distance measures are unbiased and have
an interpretable zero point.
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Overview

* Inference
O Descriptive visualisations
O Goodness of model fit
O Model comparisons



96 object images

Stimuli from Kiani et al. 2007, Kriegeskorte et al. 2008




96-object-image fMRI experiment

4 healthy human subjects
rapid event-related design (minimum SOA: 4 s)
stimulus duration: 300 ms

object images spanned a visual angle of 2.9°

fixation-cross color-discrimination task

12 runs/subject, each object image presented once
per run



96-object-image fMRI experiment

e 25 axial slices covering ventral occipital and inferior
temporal cortex (no gap)

e voxel size: 1.95*1.95*2 mm?3

e TR:2s




Region of interest: hiIT

e independent data
e bilateral

e most visually-
responsive voxels within
“red” region

e results same if FFA and
PPA excluded from hIT
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* Inference
O Descriptive visualisations
O Goodness of model fit
O Model comparisons



RDM of IT activity patterns
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RDM of IT activity patterns
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Kriegeskorte et al. 2008



Multidimensional scaling of
IT dissimilarities

natural object

artificial object

Kriegeskorte et al. 2008



Overview

* Inference
O Descriptive visualisations
O Goodness of model fit
O Model comparisons



How well do brain representations and subjective experience match?



Conventional method:
Pairwise similarity ratings

How similar are these objects?

very similar very dissimilar
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Many pairwise dissimilarities

— 96 ——

96 x 95 / 2 = 4560 pairs ‘

96
4560 * 4 s = 5 hours per subject l

similarity-judgment RDM



RDM

2D arrangement
by dissimilarity

multidimensional
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Multi-object arrangement (MA) method

Subjects arrange objects in 2D by mouse drag-and-
drop.

More efficient than pairwise similarity ratings.

Subjects arrange objects in the context of the other
objects in the set.

Kriegeskorte & Mur 2012



Please arrange these objects according to their similarity
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Please arrange these objects according to their similarity
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Please arrange these objects according to their similarity
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Please arrange these objects according to their similarity

How




Please arrange these objects according to their similarity




Please arrange these objects according to their similarity




Please arrange these objects according to their similarity




Please arrange these objects according to their similarity




Please arrange these objects according to their similarity




Please arrange these objects according to their similarity




96-object-image MA experiment

e 16 healthy human subjects

e each subject performed one 1-hour session (outside
the scanner)
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2D arrangements by dissimilarity

humanIT similarity judgments



human IT similarity judgments
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Model fit: correlation
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Are hIT and perceptual dissimilarities
correlated?



Are hIT and perceptual dissimilarities
correlated?
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Are hIT and perceptual dissimilarities
correlated?

within all images: r=0.39, p<0.0001***

within animates: r=0.34, p<0.0001***

within inanimates: r=0.19, p<0.0001***
between animates and inanimates: r=-0.16, ns

1.2} ™
P

117

1t

0.9

0.8}

0.7

hIT response-pattern dissimilarity (1-r)

0.005 0.01 0.015 0.02

perceptual dissimilarity (distance)



Overview

* Inference
O Descriptive visualisations
O Goodness of model fit
O Model comparisons
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To what extent do features and categories explain
the IT representation?

visual features semantic categories
parts, shape, color, and texture basic and superordinate levels
“elongated” “reptile”
“brown”
[ H LU ulizard”
tall 11N H 7
“scales” living

Jozwik et al. 2016
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Overview

* RSA applications in other areas of neuroscience



Applications: memory

Greater Neural Pattern Similarity
Across Repetitions Is Associated

with Better Memory

Gui Xue,* Qi Dong,™* Chuansheng Chen,® Zhonglin Lu,? Jeanette A. Mumford,® Russell A. Poldrack®*¢*
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Applications: memory




Applications: memory




Applications: speech

Categorical speech representation in human superior
temporal gyrus

Edward F Chang!->%, Jochem W Rieger™>®, Keith Johnson?, Mitchel S Berger!, Nicholas M Barbaro' &
Robert T Knight!"23
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Applications: speech
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Overview

e Toolbox



Toolbox

The RSA toolbox can be downloaded here:

http://www.mrc-cbu.cam.ac.uk/methods-and-
resources/toolboxes/

The toolbox runs in Matlab and does not have a GUI,
but contains good documentation and multiple
demos to familiarise you with the analyses. You can
use the demo scripts as a starting point for your own
analyses.


http://www.mrc-cbu.cam.ac.uk/methods-and-resources/toolboxes/
http://www.mrc-cbu.cam.ac.uk/methods-and-resources/toolboxes/
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Literature

RSA
Kriegeskorte N et al. (2008) Front Syst Neurosci 2(4): 1-28. [original methods paper]
Kriegeskorte N, Kievit R (2013) Trends Cogn Sci 17(8): 401-412. [recent review]

RSA applications in neuroscience

Kriegeskorte N et al. (2008) Neuron 60: 1126-1141. [object vision: human - monkey|
Mur M et al. (2013) Front Psychol 4(128): 1-22. [object vision: brain - behaviour]
Xue G et al. (2010) Science 330: 97-101. [memory: forgotten vs remembered items]
Ward EJ et al. (2013) J Neurosci 33(37): 14749-14757. [memory: implicit vs explicit]
Ritchey M et al. (2013) Cereb Cortex doi:10.1093/cercor/bhs258. [memory]

RSA toolbox/workshop
Nili et al. 2014 (in press) PLoS Comput Biol
RSA workshop 2015: http://www.mrc-cbu.cam.ac.uk/rsa2015/rsa2015media/



PRACTICAL



Unique semantic space in the brain of each beholder
predicts perceived similarity

lan Charest™", Rogier A. Kievit?, Taylor W. Schmitz®, Diana Deca®, and Nikolaus Kriegeskorte®!

bodies
animate
faces
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Inanimate
objects




Set up your laptop

XX = laptop number

Log in

e Username: trainXXuser

* Password: oA Kk K
=P

TurboVNCviewer [YXS
 Double-click on desktop shortcut
e VNGCserver: loginXX:51

e Click connect




Set up your laptop

Matlab
e Right-click to open terminal
e Type matlab_r2009a, hit enter

e Set matlab current directory to /imaging/trainXXlinux/Workshop/Material
e Open tutorial.m
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