fMRI classification analysis:
a conceptual introduction
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Activation-based analysis
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Pattern-information analysis
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Pattern-information analysis

Goal

Determine whether activity patterns elicited by
different conditions are statistically discriminable.

How?
Multivariate analysis of variance (MANOVA)?
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Pattern-information analysis

Goal

Determine whether activity patterns elicited by
different conditions are statistically discriminable.

How?

Approach pattern analysis as a classification problem.



Pattern classification

IF

we can classify the experimental conditions on the
basis of the activity patterns better than chance

THEN

this indicates that the activity pattern carries
information about the experimental conditions.
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Linear classification: the basic idea

weak activity

. strong activity
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Linear classification: different classifiers
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Linear classification: minimum-distance
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Linear classification: minimum-distance
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Linear classification: minimum-distance
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Linear classification: minimum-distance
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activity in voxel 2

Linear classification: FLDA

activity in voxel 1
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Linear classification: linear SVM
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Linear classification: linear SVM
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Boundary placement: some more detail

activity in voxel 2

= [

linear decision
boundary

activity in voxel 1



Boundary placement: some more detail

activity in voxel 2

linear decision
boundary

®

activity in voxel 1
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Boundary placement: some more detail
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Can we do better?
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Pattern = signal + noise
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Pattern = signal + noise
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Overfitting

After determining the decision boundary, we need to
test how well the boundary generalises to new data

(cross validation).
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Overfitting

After determining the decision boundary, we need to
test how well the boundary generalises to new data
(cross validation).

Linear classifiers usually perform better on fMRI data
than nonlinear classifiers.

Overfitting can be further reduced by:
e regularisation

e dimensionality reduction of the activity patterns (e.g.
voxel selection)
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Step 1a: preprocess

For each run:
e slice-scan-time correction
e motion-correction

Optional:

 normalisation to template (if random-effects
searchlight analysis across subjects)

e spatial smoothing (to increase signal, sensitive to
larger-scale spatial patterns)



Step 1b: split data

full data set

Make sure that training and test data are independent.
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Step 2: estimate single-subject activity
patterns

training data set
(e.g. runs 1-3)

data

t patterns
preferred over
beta patterns
(Misaki et al.
2010)
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Step 3: select voxels

Make sure that voxel selection is based on data
independent from test data set.

Most common ways of voxel selection:
e structural selection (anatomy)

e functional selection (activity)
O univariate (activation differences)
O multivariate (pattern differences)



Step 3: select voxels
anatomy

For example:
subject 1 hippocampus

subject 2

. subject n



Step 3: select voxels

function (activation differences)
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Step 3: select voxels
multivariate searchlight (pattern differences)
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Step 3: select voxels
multivariate searchlight (pattern differences)




Step 3: select voxels
multivariate searchlight (pattern differences)

Kriegeskorte et al. 2006



Step 3: select voxels

How many voxels?
Depends on the expected spatial extent of effects.

Find the right balance:
too few > risk of missing signal
too many -2 risk of overfitting (too noisy)

Common practice: select the same number of voxels in
each subject, and for each region of interest.
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Step 3: select voxels
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Step 4: train the classifier
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Step 5: test the classifier

L N,

™ voxel 1




Step 5: test the classifier

NOZ=" voxel 1

classification accuracy
for this fold = 100%



Cross-validation: generalise to....?

e different run (leave-run-out)
o different subject (leave-subject-out)
o different stimulus pair (leave-stimulus-pair-out)

o different block/trial within run (leave-block/trial-out)

Common procedure: use each run/subject etc as test
data once.

For example: 4 runs = repeat cross validation 4 times
(= 4-fold cross validation) = average accuracy across
the 4 folds.
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Step 6: statistical inference

Dominant in the literature:

Random-effects analysis across subjects using a
standard one-sample right-sided t test.

Ho: L =50%

H.: u>50%



Step 6: statistical inference

single-subject
classification accuracy

error bars error bar
= standard error = standard error

across folds across subjects



Step 6: statistical inference

subject-average
classification accuracy
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student’s t distribution
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Step 6: statistical inference

However:
e can we always assume a t distribution?
e are we sure that the accuracy is 50% under HO?

— use a permutation test: create a null distribution
by randomly shuffling the condition labels during
training.

Generally used if number of subjects < 15.



Step 6: statistical inference

training data set test data set
(e.g. runs 1-3) (e.g.run 4)

single-subject predictors ~ ¢ .
activity patterns "

(whole-brain) E E E E E E E = E

SOMECOHENE 00

BOOEONR OMl

ONBO0O0 ||

OCOHONC o

l HOOECON CH

OMEO0O0 aod



Step 6: statistical inference

training data set test data set
(e.g. runs 1-3) (e.g. run 4)
Remove the
relationship

between conditions
and patterns.
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Step 6: statistical inference

Repeat step 4 & 5 after randomly reshuffling the
condition labels.

O step 4: train the classifier
O step 5: test the classifier

Do this many (e.g. 1000) times to create a null
distribution.



Step 6: statistical inference
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Step 6: statistical inference

frequency
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Step 6: statistical inference

null distribution
of subject-average
classification accuracy

500

frequency

250 |

40% 50% 60%

If the actual subject-average classification
accuracy falls within the top 5% (blue) of
the null distribution = reject H,,.



Applications: dream content

Neural Decoding of Visual
Imagery During Sleep

T. Horikawa,»? M. Tamaki,* Y. Miyawaki,3'11' Y. Kamitani1'2¢

A

Yes, well, | saw a person. Yes. What it was... It was something like a scene that
I hid a key in a place between a chair and a bed and someone took it.
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Applications: dream content
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Toolboxes

PRoNTo (SPM)

http://www.mlinl.cs.ucl.ac.uk/pronto/

LIBSVM

http://www.csie.ntu.edu.tw/"’cjlin/libsvm/

PyMVPA
http://www.pymvpa.org/

CoSMo MVPA
http://cosmomvpa.org/



http://www.mlnl.cs.ucl.ac.uk/pronto/prtsoftware.html
http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/
http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/
http://www.pymvpa.org/
http://cosmomvpa.org/
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Literature

Linear classification tutorials
Mur M et al. (2009) Soc Cogn Affect Neurosci 4: 101-109. [conceptual introduction]
Pereira F et al. (2009) Neuroimage 45(1 Suppl): S199-S209. [introduction]

Schreiber K, Krekelberg B (2013) PLoS ONE 8(7): e69328. [cautionary comments on
statistical inference]

Kriegeskorte N et al. (2006) PNAS 103(10): 3863-3868. [multivariate searchlight]

Linear classification reviews
Norman KA et al. (2006) Trends Cogn Sci 10(9): 424-430.
Haynes JD, Rees G (2006) Nat Rev Neurosci 7: 523-534.

Linear classification: applications in neuroscience

Kamitani Y, Tong F (2005) Nat Neurosci 8(5): 679-685. [vision: classify orientations]
Formisano E et al. (2008) Science 322: 970-973. [voices: classify speakers & vowels]
Haynes JD et al. (2007) Curr Biol 17(4): 323-328. [cognitive control: task preparation]



Literature

Recursive feature elimination (RFE)

De Martino F et al. (2008) Neuroimage 43: 44-58.
Kernels

Jakel F et al. (2009) Trends Cogn Sci 13: 381-388.

Which classifiers & preprocessing options are best?

Mourao-Miranda J et al. (2005) Neuroimage 28: 980-995. [SVIM vs FLDA]

Kriegeskorte et al. (2009) Nat Neurosci 12(5): 535-540. [how to prevent selection bias]
Misaki M et al. (2010) Neuroimage 53: 103-118. [compares 6 different classifiers]
Garrido L et al. (2013) Front Neurosci 7(174): 1-4. [subtract the mean pattern?]

Relationships between classification (decoding), encoding, and RSA
Naselaris T et al. (2011) Neuroimage 56: 400-410.
Kriegeskorte N (2011) Neuroimage 56: 411-421.



PRACTICAL



Unique semantic space in the brain of each beholder
predicts perceived similarity

lan Charest™", Rogier A. Kievit?, Taylor W. Schmitz®, Diana Deca®, and Nikolaus Kriegeskorte®!

bodies
animate
faces
places
Inanimate
objects




Set up your laptop

XX = laptop number

Log in

e Username: trainXXuser

* Password: oA Kk K
=P

TurboVNCviewer [YXS
 Double-click on desktop shortcut
e VNGCserver: loginXX:51

e Click connect




Set up your laptop

Matlab
e Right-click to open terminal
e Type matlab_r2009a, hit enter

e Set matlab current directory to /imaging/trainXXlinux/Workshop/Material
e Open rsa_tutorial.m



Do it yourself: six steps

Step 2: estimate single-subject activity patterns



General linear model (GLM)

s m ,
"h-_ , Jg PRI, ik see
) time
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General linear model (GLM)




Do it yourself: six steps

Step 3: select voxels






Do it yourself: six steps

Step 4: train the classifier



Parameters:
nu-SVM
linear SVM

Leave-session-out cross-validation:
(1) Train on session 1, test on session 2
(2) Train on session 2, test on session 1



Do it yourself: six steps

Step 5: test the classifier



Do it yourself: six steps

Step 6: statistical inference
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