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General Linear Model – Theory 

• GLM
• models observed data (dependent variable) – Y
• as a linear combination (parameter estimate – β) of 
• regressors/predictor variables/explanatory variables (EV) (independent 

variables) – X

Y = Xβ+ε

• AN(C)OVA, t-test, (multiple) regression, LDA, CCA are also GLMs.
• Relationship between a dependent variable and one or more independent 

variables
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General Linear Model – Theory

• GLM
• For i observations modelled using j predictor variables:
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General Linear Model – Theory

• GLM
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• Mass univariate approach:
• Model X1-i,1-j estimated for each voxel independently (multiple tests)
• For each voxel:

• Y1-i: timeseries of i observations at a single voxel
• Β1-j for each of the j predictors

↓

• Series of β1-j images (beta0001-beta000j)

General Linear Model – Application 
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• Model:
• Contains all known source of variance:

• Controlled factors (e.g. stimuli)1

• All nuisance variables1

• Assumption about noise (ε)
• High-pass filter
• Temporal autocorrelation
• Spikes (aa)
• Movement parameters (SPM)
• PhysIO Toolbox
• Imaging Wiki/PhysNoise
• GLMDenoise (aa)
• FIX (FSL)

General Linear Model – Application 
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Material  4_aa  aa_fMRI  aamod_firstlevel_model_00001  S1  stats

spm_DesRep  Select SPM.mat

load SPM.mat
imagesc(SPM.xX.X), colormap gray
imagesc(SPM.xX.X(:,1:6)), colormap gray
imagesc(SPM.xX.X(:,7:12)), colormap gray



• Model vs. Design:
• Model

• Event-related (duration = 0)
• Epoch-based (duration > 0)

• Can be modelled with events
• To model HRF along the epoch (e.g. FIR)
• But: �̂�𝛽pRevent ~ �̂�𝛽pRepoch / nEvent1

• Design
• Blocked (fix SOA)
• Randomized (variable SOA) – jittering

• Lower predictability (à subject is more engaged)  
• Higher estimability (ß samples from various phases of the HRF)

General Linear Model – Application
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Assuming activation sustained at constant level along the epoch

SPM.Sess.U(1).ons
SPM.Sess.U(1).dur
SPM.Sess.U(1).u(SPM.xBF.T*2:SPM.xBF.T:end)
bar(SPM.Sess.U(1).u(SPM.xBF.T*2:SPM.xBF.T:end))



• Model vs. Design:

General Linear Model – Application

Model
Epoch-based Event-related

Design
Blocked
(fix SOA)

“block-design” “non-jittered
event-related design”

Randomized
(variable SOA)

“randomised 
block-design”

“jittered 
event-related design”
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SPM.Sess.U(1).ons
SPM.Sess.U(1).dur
SPM.Sess.U(1).u(SPM.xBF.T*2:SPM.xBF.T:end)
bar(SPM.Sess.U(1).u(SPM.xBF.T*2:SPM.xBF.T:end))



• BOLD response – Kernel:
• stereotyped pattern of response 

(based on primary sensory areas)

• Canonical Haemodynamic Response Function
(HRF) – spm_hrf(TR,p)
• Double-gamma function
• uses 7 parameters

• p(1) - delay of response (relative to onset)     6
• p(2) - delay of undershoot (relative to onset) 16
• p(3) - dispersion of response                          1
• p(4) - dispersion of undershoot                       1
• p(5) - ratio of response to undershoot             6
• p(6) - onset (seconds)                                   0
• p(7) - length of kernel (seconds)                   32

General Linear Model – Application 

6 s 32 s16 s
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plot(SPM.xBF.bf(:,1))



• HRF
• Derivatives (to “adjust” HRF1):

Temporal derivative2(-delay) Dispersion derivative2 (-duration)

General Linear Model – Application
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plot(SPM.xBF.bf)

spm_DesRep  Select SPM.mat
Design  Explore  Session 1  REST

It is a bit complicated to bring them forward to higher-level analysis (F-test).
hrf_demo, play
Alternative: FIR (we  model each time-bin separately) 



General Linear Model – Application 

⊗ =

⊗ =

• BOLD response - Convolution:
• Epochs

• Events
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bar(SPM.Sess.U(1).u(SPM.xBF.T*2:SPM.xBF.T:end))
hold on
plot(SPM.xX.X(:,1))



• Non-orthogonality
• Pairwise correlation (SPM)

• Rank deficiency (more general)
• If any column of X is a linear 

combination of any others

↓

• Some parameters cannot be estimated 
uniquely (e.g. in case of EV1 and EV2)

• ↓ efficiency for EV1, EV2 and EV1+EV2
• Good efficiency for EV1-EV2

General Linear Model – Application
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spm_DesRep  Select SPM.mat
Design  Design orthogonality




• Orthogonalisation
• Assigning shared explained variance

• Variance
explained
by EV1

• Variance
explained
by EV2

General Linear Model – Application

Without Orthogonalisation Orthogonalise EV2 wrt. EV1

↑ sensitivity 
to EV1
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• Regressor = predictor variables/explanatory variables – One ß for each regressor
• Condition ⊗ HRF

• Name
• Onset
• Duration
• Modulation

• Covariate: it will not be convolved with HRF

• aa_user_fmri.m
• aas_addevent(aap, ’aamod_firstlevel_model’, mriname, sessname, onsets, durations, modulation)

• aas_addcovariate(aap, ’aamod_firstlevel_model’, mriname, sessname, covarName, covarVector, HRF, interest)

General Linear Model – SPM input
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• Modulation: effect with many level (or continuous)
• Parametric modulation

• Stimulus strength
• Response accuracy

• Temporal modulation = Parametric modulation using onset as parameter
• Habituation
• Learning

• Polynomial Expansion: higher-order effects

• Disadvantages
• Correlated regressorsà Orthogonalisation

• < SPM12: always on (left to right)1

• SPM12: switchable
• Difficult to set up interactions between factors

General Linear Model – SPM input
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1. Order of modulators matters  put the ‘most important’ first



• “Microtiming” ~ Slicetiming1

• Microtime resolution: time bins within one TR
• Highest temporal precision = TR / MicRes
• Divided equally for the whole TR

• Microtime onset: first time bin

• 2Sparse EPI: e.g. TR = 3s, TA = 2s, 20 slices

• Use middle slice (#10) as reference:

General Linear Model – SPM input

Slicetiming
Microtiming

Slicetiming Microtiming2

Slice order 20:-1:1 Microtime resolution 30

Reference slice 10 Micortime onset 10
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SPM.xBF.T, SPM.xBF.T0

1. Based on:
aap.tasksettings.aamod_slicetiming.sliceorder
aap.tasksettings.aamod_slicetiming.refslice
2. Manual/Overwrite:
aap.tasksettings.aamod_firstlevel_model.xBF.T
aap.tasksettings.aamod_firstlevel_model.xBF.T0



• beta_XXXX – �𝜷𝜷 (XXXX: for each EV)

• mask – brain mask (voxels included in the analysis)1

• ResMS – �𝜺𝜺 (mean squared)
• Heterogeneity may indicate unexplained variance in the data

• RPV – RESELs Per Voxel (local smoothness)
• RPV = FWHMin voxel

-3

• ≤ 0.037 (RESEL ≥ 3 voxel) to ensure the minimum smoothness for GRFT2

General Linear Model – SPM output
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You cannot expect any result in unanalysed area! Therefore it is better to analyse everything and restrict the inference only using SVC
play



• Specific hypotheses to be tested using t or F statistics
• How each predictor (column of the design matrix) plays a role
• E.g. condition 1 > condition 2 à contrast [1 -1 0]

• aa_user_fmri.m
• aas_addcontrast(aap, 'aamod_firstlevel_contrasts', mriname, format, vector, conname,contype)

General Linear Model – Contrasts

1 -1 0c =
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General Linear Model – Contrasts

• F contrast: 
• Model comparison: How much 

variance is explained by the model 
including the conditions of interest 
(e.g. movement parameters)?

• Non-directional
• Can contain more rows (OR)

[1 0 0; % EV1 > baseline OR
0 1 0] % EV2 > baseline

How much variance is explained by EV1 
and EV2? Should we include them in the 
model?1

• SPM output:
• ess*.img (Extra Sum of Squares)
• spmF*.img (F-map à p)

• T contrast: 
• Hypothesis test: How do the 

conditions of interest relate to 
each other and/or to the baseline?

• Directional
• Can contain only one row

• SPM output:
• con*.img (Contrast)
• spmT*.img (T-map à p)

MRC | Medical Research Council 

Presenter
Presentation Notes
1. play



General Linear Model – Contrasts

• T contrast: 
• The contrast vector sums to 0, 1 or -1
• Positive weights sum to 1
• Negative weights sum to -1
• Scaling issue

• T-stat does not depend on scaling (of both the regressors and the contrast).
• Contrast1 depend on scaling2à consistency across subjects!

[1      1      1       1         ] / 4

Su
bj

ec
t 1

[1       1      1         ] / 3
Su

bj
ec

t 5
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FSL’s FLAME takes care of it
play



General Linear Model – Contrasts

• T contrast: 
• Examples1:

• [1 0 0] : condition 1 > unmodelled/implicit baseline
• [2 -1 -1] : condition 1 > sum of conditions 2 and 3
• [1 -0.5 -0.5] : condition 1 > average of conditions 2 and 3
• [-3 -1 1 3] : linear increase over 4 conditions
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Inverse contrasts have inverse meaning (only for t-test)



Statistical Inference

• How much is enough?
• Converting a continuous statistical value (p) to a binary decision à cut-off

t > 0.5t > 3.5t > 5.5

High Threshold Medium Threshold Low Threshold

Good Specificity

Poor Sensitivity
(risk of false negatives)

Very Certain1

Good Sensitivity

Poor Specificity
(risk of false positives)

Quite Uncertain1
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One can never say that “it is true/active”; only that ”it is true/active with this certainty”. And this “certainty” is described/quantified with the threshold. 



Statistical Inference

• How to make certainty comparable? 

• Multiple comparison
• Testing 100,000 random voxels at p = 0.05 à 5000 “significant” by chance 

(false positives, or “type I” errors)1

• FamilyWise Error Rate (FWER): 
• Chance of any false positive in 

the “family” (any similar 
measurement)

• False Discovery Rate (FDR): 
• Chance/Proportion of false 

positives in the rejected tests (i.e. 
suprathreshold results)

• To enable in SPM:
• global defaults
• defaults.stats.topoFDR = 0;
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Results from p depends on number of voxels  uncomparable



Statistical Inference

11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5%

Control of Per Comparison Rate (i.e.none) at 10%

Percentage of Null Pixels that are False Positives

FWE

Control of Familywise Error Rate at 10%

Occurrence of Familywise Error

6.7% 10.4% 14.9% 9.3% 16.2% 13.8% 14.0% 10.5% 12.2% 8.7%

Control of False Discovery Rate at 10%

Percentage of Activated Pixels that are False Positives
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Statistical Inference

• FWE
• Bonferroni correction: p(corrected) = p(uncorrected)/ncomparisons

• Overly conservative in fMRI due to spatial dependence:
• Nearby voxels are correlated: smoothness

• Smoother data = More voxels in correlation à fewer indep. elements
↓

• Gaussian Random Field Theory (GRFT) – default in SPM
• Estimate the true number of independent/RESolution Elements (RESEL) using 

GRFT à RPV.img: RESEL Per Voxel (local smoothness)
• Corrects for the number of RESELs à Less conservative than Bonferroni
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Statistical Inference

• aa default
• aamod_firstlevel_threshold.xml

• aa_user_fmri.m / aap_parameters.mat
• aap.tasksettings.aamod_firstlevel_threshold.threshold.correction = 'none';
• aap.tasksettings.aamod_firstlevel_threshold.threshold.p = 0.001;
• aap.tasksettings.aamod_firstlevel_threshold.threshold.extent = 0;
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Statistical Inference

• Peak
• Cluster
• Set

Levels of inference
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[hReg,xSPM,SPM] = spm_results_ui  whole brain



Statistical Inference

• Peak-level (voxel-level) inference
• Probability p of that or higher peak voxel intensity  (i.e. T/F-value)
• Retains voxels above the threshold ( p ≤ ua )

• Best spatial specificity: interpretable for each voxel

Significant 
Voxels

space

ua

No significant 
Voxels

courtesy to Tom Nichols

Levels of inference
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Statistical Inference

courtesy to Tom Nichols

• Cluster-level inference (default in FSL)
• Probability p of that or larger number of neighbouring significant voxels
• Two thresholds

• Define significant voxels by “cluster-forming” threshold ( p ≤ uclus )
• Retains only large clusters ( p ≤ P(ka) )

• Worse spatial specificity: interpretable only for the whole cluster

Cluster not 
significant 

uclus

space

Cluster 
significantka ka

Levels of inference
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Statistical Inference

courtesy to Tom Nichols

• Set-level inference
• Probability p of that or larger number of significant clusters

• Worst spatial specificity: interpretable only globally

uclus

space

Only 1 significant cluster
ka ka

Levels of inference
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Statistical Inference

• aamod_firstlevel_threshold

Visualisation
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Statistical Inference

• aamod_firstlevel_threshold

Visualisation
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Statistical Inference

• aamod_firstlevel_threshold_register2FS
• Launch a VNC session on a login-gpu01-03 machine

• ssh login-gpu0Xà remember the machine name (e.g. login-gpu01)
• vncstartà remember the desktop number (50+account number; e.g. 51)
• TurboVNC (e.g. login-gpu01:51)

• FreeView
• cdw
• cd Material/4_aa/AA_fMRI/aamod_firstlevel_threshold_register2FS_00001/S1
• vglrun freeview

• View à Viewport Layout à 1 & 3 Horizontal
• View à Viewport Layout à 3D
• View à Show Slices (3D View): off

Visualisation
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Statistical Inference

• aamod_firstlevel_threshold_register2FS
• Load volume (brain.mgz) and overlay (rthr*.nii)

• File à Load Volume à brain.mgz
• File à Load Volume à ../stats/rthrT_0001.nii à Color map: Heat

• Load Surface (lh.*) and overlay (rthr*2FS_lh.mgh)
• File à Load Surface à lh.pial
• Curvature: binary
• Overlay à Load generic… à ../stats/rthrT_00012FS_lh.mgh
• Configure Overlay àMin = 3

Visualisation
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