

Single subject analysis using GLM

Tibor Auer

MRC Cognition and Brain Sciences Unit, Methods group

With thanks to Russell Thompson, Rik Henson, Matthew Brett and the authors of the HBF

A functional experiment

General Linear Model – Theory

GLM

- models observed data (dependent variable) Y
- as a linear combination (parameter estimate β) of
- regressors/predictor variables/explanatory variables (EV) (independent variables) X

$$Y = X\beta + \epsilon$$

- AN(C)OVA, t-test, (multiple) regression, LDA, CCA are also GLMs.
- Relationship between a dependent variable and one or more independent variables

General Linear Model – Theory

• GLM

• For *i* observations modelled using *j* predictor variables:

General Linear Model – Theory

• GLM

• For *i* observations modelled using *j* predictor variables:

- Mass univariate approach:
 - Model $X_{1-i,1-i}$ estimated for each voxel independently (multiple tests)
 - For each voxel:
 - Y_{1-i}: timeseries of i observations at a single voxel
 - \mathbf{B}_{1-j} for each of the j predictors

• Series of β_{1-j} images (beta0001-beta000j)

Model:

- Contains all known source of variance:
 - Controlled factors (e.g. stimuli)¹
 - All nuisance variables¹
- Assumption about noise (ε)
 - High-pass filter
 - Temporal autocorrelation
 - Spikes (aa)
 - Movement parameters (SPM)
 - PhysIO Toolbox
 - Imaging Wiki/PhysNoise
 - GLMDenoise (aa)
 - FIX (FSL)

Model vs. Design:

- Model
 - Event-related (duration = 0)
 - Epoch-based (duration > 0)
 - Can be modelled with events.
 - To model HRF along the epoch (e.g. FIR)
 - But: $\hat{\beta} pR_{event} \sim \hat{\beta} pR_{epoch} / nEvent^1$
- Design
 - Blocked (fix SOA)
 - Randomized (variable SOA) jittering
 - Lower predictability (à subject is more engaged)
 - Higher estimability (B samples from various phases of the HRF)

Model vs. Design:

BOLD response – Kernel:

- stereotyped pattern of response (based on primary sensory areas)
- Canonical Haemodynamic Response Function (HRF) – spm_hrf(TR,p)
 - Double-gamma function
 - uses 7 parameters

HRF

Derivatives (to "adjust" HRF¹):

• BOLD response - Convolution:

Events

- Non-orthogonality
 - Pairwise correlation (SPM)
 - Rank deficiency (more general)
 - If any column of X is a linear combination of any others

- Some parameters cannot be estimated uniquely (e.g. in case of EV1 and EV2)
 - ◆ efficiency for EV1, EV2 and EV1+EV2
 - Good efficiency for EV1-EV2

Measure: abs. value of cosine of angle between columns of design matrix Scale: black - colinear (cos=+1/-1)

white - orthogonal (cos=0) gray - not orthogonal or colinear

Orthogonalisation

Assigning shared explained variance

General Linear Model – SPM input

- Regressor = predictor variables/explanatory variables One ß for each regressor
 - Condition ⊗ HRF
 - Name
 - Onset
 - Duration
 - Modulation
 - Covariate: it will not be convolved with HRF
- aa_user_fmri.m
 - aas_addevent(aap, 'aamod_firstlevel_model', mriname, sessname, onsets, durations, modulation)
 - aas_addcovariate(aap, 'aamod_firstlevel_model', mriname, sessname, covarName, covarVector, HRF, interest)

General Linear Model – SPM input

- Modulation: effect with many level (or continuous)
 - Parametric modulation
 - Stimulus strength
 - Response accuracy
 - Temporal modulation = Parametric modulation using onset as parameter
 - Habituation
 - Learning
 - Polynomial Expansion: higher-order effects
 - Disadvantages
 - Correlated regressors à Orthogonalisation
 - < SPM12: always on (left to right)¹
 - SPM12: switchable
 - Difficult to set up interactions between factors

General Linear Model – SPM input

- "Microtiming" ~ Slicetiming¹
 - Microtime resolution: time bins within one TR
 - Highest temporal precision = TR / MicRes
 - Divided equally for the whole TR
 - Microtime onset: first time bin

• ²Sparse EPI: e.g. TR = 3s, TA = 2s, 20 slices

Slicetiming																<u></u>
Microtiming										·		·				

• Use middle slice (#10) as reference:

Slicetiming		Microtiming ²							
Slice order	20:-1:1	Microtime resolution	30						
Reference slice	10	Micortime onset	10						

General Linear Model – SPM output

- beta_XXXX $\widehat{\beta}$ (XXXX: for each EV)
- brain mask (voxels included in the analysis)¹ mask
- ResMS $-\hat{\epsilon}$ (mean squared)
 - Heterogeneity may indicate unexplained variance in the data
- RPV RESELs Per Voxel (local smoothness)
 - RPV = $FWHM_{in \ voxel}^{-3}$
 - \leq 0.037 (RESEL \geq 3 voxel) to ensure the minimum smoothness for GRFT²

- Specific hypotheses to be tested using t or F statistics
 - How each predictor (column of the design matrix) plays a role
 - E.g. condition 1 > condition 2 à contrast [1 -1 0]

- aa_user_fmri.m
 - aas_addcontrast(aap, 'aamod_firstlevel_contrasts', mriname, format, vector, conname,contype)

F contrast:

- Model comparison: How much variance is explained by the model including the conditions of interest (e.g. movement parameters)?
- Non-directional
- Can contain more rows (OR)

[1 0 0; % EV1 > baseline OR 0 1 0] % EV2 > baseline How much variance is explained by EV1 and FV2? Should we include them in the model?1

- SPM output:
 - ess*.img (Extra Sum of Squares)
 - spmF*.img (F-map à p)

T contrast:

- Hypothesis test: How do the conditions of interest relate to each other and/or to the baseline?
- Directional
- Can contain only one row

- SPM output:
 - con*.img (Contrast)
 - spmT*.img (T-map à p)

T contrast:

- The contrast vector sums to 0, 1 or -1
- Positive weights sum to 1
- Negative weights sum to -1
- Scaling issue
 - T-stat does not depend on scaling (of both the regressors and the contrast).
 - Contrast¹ depend on scaling² à consistency across subjects!

T contrast:

Examples¹:

: condition 1 > unmodelled/implicit baseline • [1 0 0]

: condition 1 > sum of conditions 2 and 3 • [2 -1 -1]

• [1 -0.5 -0.5] : condition 1 > average of conditions 2 and 3

• [-3 -1 1 3] : linear increase over 4 conditions

- How much is enough?
 - Converting a continuous statistical value (p) to a binary decision à cut-off

- How to make certainty comparable?
- Multiple comparison
 - Testing 100,000 random voxels at $p = 0.05 \ge 5000$ "significant" by chance (false positives, or "type I" errors)¹
- FamilyWise Error Rate (FWER):
 - Chance of any false positive in the "family" (any similar measurement)
- False Discovery Rate (FDR):
 - Chance/Proportion of false positives in the rejected tests (i.e. suprathreshold results)
 - To enable in SPM:
 - global defaults
 - defaults.stats.topoFDR = 0;

Control of Per Comparison Rate (i.e.none) at 10%

Percentage of Null Pixels that are False Positives

Control of False Discovery Rate at 10%

Percentage of Activated Pixels that are False Positives

Control of Familywise Error Rate at 10%

Occurrence of Familywise Error

FWE

FWE

- Bonferroni correction: $p_{(corrected)} = p_{(uncorrected)}/n_{comparisons}$
 - Overly conservative in fMRI due to spatial dependence:
 - Nearby voxels are correlated: smoothness
 - Smoother data = More voxels in correlation à fewer indep. elements

- Gaussian Random Field Theory (GRFT) default in SPM
 - Estimate the true number of independent/RESolution Elements (RESEL) using GRFT à RPV.img: RESEL Per Voxel (local smoothness)
 - Corrects for the number of RESELs à Less conservative than Bonferroni

- aa default
 - aamod_firstlevel_threshold.xml
- aa_user_fmri.m / aap_parameters.mat
 - aap.tasksettings.aamod_firstlevel_threshold.threshold.correction = 'none';
 - aap.tasksettings.aamod_firstlevel_threshold.threshold.p = 0.001;
 - aap.tasksettings.aamod_firstlevel_threshold.threshold.extent = 0;

Levels of inference

- Peak
- Cluster
- Set

SPMresults: ANOVA

Height threshold T = 4.802783 {p<0.05 (FWE)}

Extent threshold k = 0 voxels

Statistics: p-values adjusted for search volume

set-level cluster-level						mm mm mm							
р	С	p _{FIME-corr}	р FWE-com ^g FDR-com k		рипсоп	p _{FIME-com}	а́ FDR-com	Ţ	(Z_)	рипсоп	111111 111111 111111		
0.000	5	0.000	0.000	1292	0.000	0.000	0.000	8.99	7.00	0.000	36 -22	62	
						0.000	0.000	8.90	5.95	0.000	40 -18	55	
		0.000	0.004	321	0.001	0.000	0.000	7.63	6.26	0.000	-18 -50	-26	
		0.003	0.085	84	0.068	0.002	0.062	5.84	5.12	0.000	-58 -18	18	
		0.003	0.085	97	0.052	0.007	0.185	5.45	4.84	0.000	-56 6	10	
						0.012	0.271	5.28	4.72	0.000	-44 -4	ł 8	
		0.035	0.703	4	0.703	0.041	0.810	4.87	4.42	0.000	-60 -22	40	

Levels of inference

- Peak-level (voxel-level) inference
 - Probability p of that or higher peak voxel intensity (i.e. T/F-value)
 - Retains voxels above the threshold ($p \le u_a$)
 - Best spatial specificity: interpretable for each voxel

Levels of inference

- Cluster-level inference (default in FSL)
 - Probability p of that or larger number of neighbouring significant voxels
 - Two thresholds
 - Define significant voxels by "cluster-forming" threshold ($p \le u_{clus}$)
 - Retains only large clusters $(p \le P(k_a))$
 - Worse spatial specificity: interpretable only for the whole cluster

Levels of inference

- Set-level inference
 - Probability *p* of that or larger number of significant clusters
 - Worst spatial specificity: interpretable only globally

Only 1 significant cluster

Visualisation

aamod_firstlevel_threshold

Visualisation

aamod_firstlevel_threshold

Visualisation

- aamod_firstlevel_threshold_register2FS
 - Launch a VNC session on a login-gpu01-03 machine
 - ssh login-gpu0X à remember the machine name (e.g. login-gpu01)
 - vncstart à remember the desktop number (50+account number; e.g. 51)
 - TurboVNC (e.g. login-gpu01:51)
 - FreeView
 - cdw
 - cd Material/4_aa/AA_fMRI/aamod_firstlevel_threshold_register2FS_00001/S1
 - vglrun freeview
 - View à Viewport Layout à 1 & 3 Horizontal
 - View à Viewport Layout à 3D
 - View à Show Slices (3D View): off

Visualisation

- aamod_firstlevel_threshold_register2FS
 - Load volume (brain.mgz) and overlay (rthr*.nii)
 - File à Load Volume à brain.mgz
 - File à Load Volume à ../stats/rthrT_0001.nii à Color map: Heat
 - Load Surface (lh.*) and overlay (rthr*2FS_lh.mgh)
 - File à Load Surface à Ih.pial
 - Curvature: binary
 - Overlay à Load generic... à ../stats/rthrT_00012FS_lh.mgh
 - Configure Overlay à Min = 3