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Outline

• How to fit fMRI responses with a general linear 
model 

• Implications for experimental design 

• Workshop: What kind of design is the most 
efficient?
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The general linear model
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A typical fMRI task
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• Face blocks appeared at volumes 8, 88, 168, 200 

• House blocks at volumes 24, 120, 152, 216 

• All blocks lasted 8 volumes



A typical fMRI task
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But fMRI responses are not instantaneous…



The canonical SPM HRF
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• response to a zero duration stimulus at 
time 0 

• time to peak: 5-6s
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The canonical SPM HRF
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A typical fMRI task
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The convolved design 
matrix



Trend removal
In SPM you won’t see the 
trend covariates in the 
design matrix, except for 
the constant. 

Instead you specify a 
cutoff for a high-pass filter 
(typically 128s), and the 
data and design matrix are 
both detrended by this. 

(This is mathematically 
equivalent to including the 
trend regressors in the 
design matrix - you will get 
the same parameter 
estimates for your task 
regressors either way)



What weights should we use to obtain a fitted timecourse that is 
as close as possible to the data (ie, smallest squared deviation)?





Contrast vectors 
are basically just 
a convenient 
way to average 
or subtract 
parameter 
estimates

[-1 1 0 0 0 0 0 0] * b = 3.2, ie 8.0-4.8
[.25 .25 .25 .25 0 0 0 0] * b = 5.8, ie mean(b(1:4))



Serial autocorrelation
• fMRI residuals are not independent and 

identically distributed (iid) 
• Why not? Breathing, heartbeat cycle, 

unmodelled neuronal activity 
• This causes serial autocorrelation 

• if you correlate the residual 
timecourse with a time-shifted version 
of itself, rho > 0 

• The power spectrum of the residuals 
is higher at low frequencies (figure) 

• Which invalidates the error term that is 
used for parametric stats inference (T 
tests, standard errors, p values) - we 
have fewer effective df than we thought!

Eklund et al., 2012, NeuroImage
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https://doi.org/10.1016/j.neuroimage.2012.03.093
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SPM AR(1) correction
• By default, SPM estimates (1st-order) 

autocorrelation and whitening data and 
design by this (nb, the same global 
adjustment for all voxels) 

• This works, but not perfectly. Especially 
problematic with fast TR (figure) 

• Why not? autocorrelation probably differs 
over the brain (e.g., veiny voxels), and 
probably extends for longer than 1 
volume (so 1st-order isn’t really enough) 

• If you need single-participant p values 
you may want to use the new SPM FAST 
correction, or consider alternative 
(permutation test) approaches.

TR=1s

TR=2s

TR=3s

Eklund et al., 2012, NeuroImage

https://doi.org/10.1016/j.neuroimage.2012.03.093


Does autocorrelation modelling 
matter for group results?

No. 

For the (typical) group analysis case, AR modelling 
issues will potentially add (a very small amount of) 
variance to your single-participant estimates, but 
won’t bias your inferences (more on this next time) 

Olszowy et al., 2019, Nat Comm

https://doi.org/10.1038/s41467-019-09230-w
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Parametric 
modulators

• Encode modulations of stimulus responses by continuous variables 
• SPM solution is one regressor for the stimulus effect and another 

mean-centered regressor for each modulator on that response 
• Why not just the modulator? Because we don’t want to assume zero 

response when modulator=0 
• Typical applications: Reinforcement learning (Dolan, O’Doherty), vision 

(Gallant), ‘carry-over’ fMRI (Aguirre), fancy grid cell stuff (Behrens)



Orthogonalisation
• If we compare the models Y = task and Y = 

task + modu, the beta(task) will explain more 
variance when it is the only predictor in the 
model 

• We can think of beta(task) as being 
‘adjusted for modu’ when modu is in the 
model 

• What about if we orthogonalise modu with 
respect to task, ie, we regress out the 
contribution of task from modu? 

• The modu predictor will change - but 
modu’s parameter estimates will stay 
exactly the same (counterintuitive but true!) 

• The task predictor stays the same - but 
beta(task) will change, because all the 
shared variance now goes to task 

• In effect, beta(task) from the model Y = task + 
modu(orth(task)) will be similar to the model Y 
= task, but with less residual error 

• Same beta but less error = ‘better’ stats
Mumford et al., 2015, PLoS ONE

Y task
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SPM orthogonalisation 
quirks • When you have multiple modulators, SPM by default 

orthogonalises them sequentially - so the order in which 
you enter the modulators in the design matrix is 
significant! 

• You may not want this ‘feature’ since it really 
complicates interpretation 

• If you want to change this you will have to hand code 
the orthogonalised modulators and add them (disabling 
SPM’s own orth). 

• Or fit the model twice, taking the second modulator’s 
beta from each

Mumford et al., 2015, PLoS ONE



Designing fMRI experiments

Given what we now know about the assumed HRF 
shape and the noise model, what kind of design is 
most efficient for detecting a hypothesised effect? 

Experimental design has a huge effect on detection 
power in fMRI — this can make or break your study



Collinearity
• Dependencies between convolved regressors increases the 

variance of parameter estimates 
• NB, does not bias the fit - but can make it almost impossible 

to detect effects (e.g. the single-participant betas that go into 
group analysis will be highly variable) 

• Big problem in fMRI, since convolution with HRF introduces 
dependencies between neighbouring events (e.g., encoding 
and recall phase in memory experiment) 

• SPM outputs collinearity estimates (see above - basically 
predictor correlation matrix). Useful for finding pairs of 
dependent conditions. But a bit late to find this out at model fit 
stage!



Variance 
inflation factor

• Collinearity can also arise over sets of regressors - consider 
using variance inflation factor (VIF) to test for this at 
experimental design stage 

• VIF = 1 / (1-R2) where R2 comes from using all regressors but 
one to predict the final regressor 

• Typical values: 
• VIF=1 for completely orthogonal designs (zero correlation 

between prediction and left-out regressor) 
• VIF=Inf for rank deficient designs (perfect correlation between 

prediction and left-out regressor)  
• By convention, VIF>5 indicates a problem (but lower is better)



Design efficiency
• In Matlab code designeff = 1 / trace(c * inv(X’*X) * c’), Where 

• c is a matrix of contrasts (here with contrasts stacked in rows) 

• X is the convolved and filtered design matrix 

• If you’ve seen the formula for calculating standard errors in a GLM, this may 
seem familiar… It’s sterr = sqrt(diag(c * inv(X’*X) * c’) * mrss), where mrss 
is the mean residual sum of squares (one value per voxel) 

• A design with higher design efficiency should produce contrast estimates with 
less variance 

• Importantly, the contrast estimate won’t be affected, so optimising your 
efficiency for a particular contrast doesn’t bias your estimates (although that 
contrast will have smaller standard errors and hence smaller p values) 

• Caveat: Efficiency is not in meaningful units (it scales with design matrix, and 
it’s monotonic but nonlinear with respect to expected standard errors) 

• So unlike VIF there are no fixed rules for what is a ‘good’ efficiency 

• It’s also not the case that a design with 2x efficiency has exactly 2x power - 
but higher efficiency is always associated with increases in power



Typical fMRI designs

Very efficient Very inefficient



Rules of thumb for fMRI design
1. Randomise trial order for each run to minimise collinearity 
2. Cluster trials (pseudorandom event-related design or just 
block) to keep signal in low frequency band (the HRF 
convolution basically low-pass filters the regressor)  

3. Don’t put conditions you want to compare too far apart 
(>60s) (the de-trend high-pass filters the regressor) 

4. Keep the number of conditions as small as possible to 
make the above easier (and to enable shorter runs) 

5. For differential effects (ie, what you usually care about), 
fixed ISI works best 

6. For much more on this, see CBU imaging wiki entry on 
design efficiency or the associated Henson paper



Useful references
• Rik’s design efficiency wiki: http://imaging.mrc-

cbu.cam.ac.uk/imaging/DesignEfficiency 

• Jeanette Mumford’s brain stats blog: 
mumfordbrainstats.tumblr.com (see also facebook group) 

• The SPM mailing list: https://www.jiscmail.ac.uk/lists/
SPM.html (vast searchable archive) 

• Kendrick Kay’s course on Statistics and Data Analysis in 
MATLAB: http://kendrickkay.net/psych5007/ (if you want 
to roll your own GLM)

http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency
http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency
http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency
http://mumfordbrainstats.tumblr.com
https://www.jiscmail.ac.uk/lists/SPM.html
https://www.jiscmail.ac.uk/lists/SPM.html
http://kendrickkay.net/psych5007/


Workshop time
workshop laptops (using X2Go):

In matlab, type 

practical_efficiency

Use cursor to place 20 trials for each condition into the design matrix figure. 
Press return/enter when finished to obtain a convolved and filtered design 
matrix, with efficiency and VIF estimates. 

Repeat as needed 

personal laptops (requires Matlab, SPM12):

download workshop materials from 

http://imaging.mrc-cbu.cam.ac.uk/methods/IntroductionNeuroimagingLectures 
- unzip to directory 

In matlab: ensure SPM12 is on your path (addpath spmdir), move to said 
directory (cd unzippeddir) 

follow above steps for workshop laptops

http://imaging.mrc-cbu.cam.ac.uk/methods/IntroductionNeuroimagingLectures



