
fMRI 2: single
participant GLM

Johan Carlin
MRC Cognition and Brain Sciences Unit, Methods Group

johan.carlin@mrc-cbu.cam.ac.uk

Acknowledgment: Tibor Auer, Kendrick Kay

mailto:johan.carlin@mrc-cbu.cam.ac.uk

Outline

• How to fit fMRI responses with a general linear
model

• Implications for experimental design

• Workshop: What kind of design is the most
efficient?

Observed(
Data(

=" x" +"

Design(Matrix(Parameter(
Es4mates(

Error(

Es'ma'on"

Synchronisa4on(pulses(

S4mulus(presenta4on(

Event(4mings(etc.(Preprocessing(

Sta's'cal"Inference"

Design"Setup"

last session next sessiontoday

The general linear model

y1

y2

y3

…

yi

x11 x12 … x1j

x21 x22 … x2j

x31 x32 … x3j

… … … …

xi1 xi2 … xij

ε1

ε2

ε3

…

εi

β1

β2

β3

…

βj

i"o
bs
er
va
*o

ns
"

j"predictor"variables"

=" x" +"

Y"="Xβ"+"ε"
j"p
re
di
ct
or
"w
ei
gh

ts
"

i"n
oi
se
s"

A typical fMRI task

0 50 100 150 200 250
160

180

200

si
gn

al
 in

te
ns

ity

0 50 100 150 200 250
0

0.5

1

in
di

ca
to

r

face
house

0 50 100 150 200 250
ï2

0

2

co
nv

ol
ve

d
w

ith
 H

R
F

time (scans)

• Face blocks appeared at volumes 8, 88, 168, 200

• House blocks at volumes 24, 120, 152, 216

• All blocks lasted 8 volumes

A typical fMRI task

0 50 100 150 200 250
160

180

200

si
gn

al
 in

te
ns

ity

0 50 100 150 200 250
0

0.5

1

in
di

ca
to

r

face
house

0 50 100 150 200 250
ï2

0

2

co
nv

ol
ve

d
w

ith
 H

R
F

time (scans)

But fMRI responses are not instantaneous…

The canonical SPM HRF

0 5 10 15 20 25 30
ï0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (s)

re
sp

on
se

• response to a zero duration stimulus at
time 0

• time to peak: 5-6s

The canonical SPM HRF

0 5 10 15 20 25 30
ï0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (s)

re
sp

on
se

full
at TR=2s

The canonical SPM HRF

0 5 10 15 20 25 30
ï0.5

0

0.5

1

1.5

2

2.5

3

time (s)

re
sp

on
se

full
at TR=2s
with 16s duration

A typical fMRI task

0 50 100 150 200 250
160

180

200

si
gn

al
 in

te
ns

ity

0 50 100 150 200 250
0

0.5

1

in
di

ca
to

r

face
house

0 50 100 150 200 250
ï2

0

2

co
nv

ol
ve

d
w

ith
 H

R
F

time (scans)

The convolved design
matrix

Trend removal
In SPM you won’t see the
trend covariates in the
design matrix, except for
the constant.

Instead you specify a
cutoff for a high-pass filter
(typically 128s), and the
data and design matrix are
both detrended by this.

(This is mathematically
equivalent to including the
trend regressors in the
design matrix - you will get
the same parameter
estimates for your task
regressors either way)

What weights should we use to obtain a fitted timecourse that is
as close as possible to the data (ie, smallest squared deviation)?

Contrast vectors
are basically just
a convenient
way to average
or subtract
parameter
estimates

[-1 1 0 0 0 0 0 0] * b = 3.2, ie 8.0-4.8
[.25 .25 .25 .25 0 0 0 0] * b = 5.8, ie mean(b(1:4))

Serial autocorrelation
• fMRI residuals are not independent and

identically distributed (iid)
• Why not? Breathing, heartbeat cycle,

unmodelled neuronal activity
• This causes serial autocorrelation

• if you correlate the residual
timecourse with a time-shifted version
of itself, rho > 0

• The power spectrum of the residuals
is higher at low frequencies (figure)

• Which invalidates the error term that is
used for parametric stats inference (T
tests, standard errors, p values) - we
have fewer effective df than we thought!

Eklund et al., 2012, NeuroImage

TR=1s

TR=2s

TR=3s

https://doi.org/10.1016/j.neuroimage.2012.03.093

Serial autocorrelation
• fMRI residuals are not independent and

identically distributed (iid)
• Why not? Breathing, heartbeat cycle,

unmodelled neuronal activity
• This causes serial autocorrelation

• if you correlate the residual
timecourse with a time-shifted version
of itself, rho > 0

• The power spectrum of the residuals
is higher at low frequencies (figure)

• Which invalidates the error term that is
used for parametric stats inference (T
tests, standard errors, p values) - we
have fewer effective df than we thought!

Eklund et al., 2012, NeuroImage

TR=1s

TR=2s

TR=3s

https://doi.org/10.1016/j.neuroimage.2012.03.093

SPM AR(1) correction
• By default, SPM estimates (1st-order)

autocorrelation and whitening data and
design by this (nb, the same global
adjustment for all voxels)

• This works, but not perfectly. Especially
problematic with fast TR (figure)

• Why not? autocorrelation probably differs
over the brain (e.g., veiny voxels), and
probably extends for longer than 1
volume (so 1st-order isn’t really enough)

• If you need single-participant p values
you may want to use the new SPM FAST
correction, or consider alternative
(permutation test) approaches.

TR=1s

TR=2s

TR=3s

Eklund et al., 2012, NeuroImage

https://doi.org/10.1016/j.neuroimage.2012.03.093

Does autocorrelation modelling
matter for group results?

No.

For the (typical) group analysis case, AR modelling
issues will potentially add (a very small amount of)
variance to your single-participant estimates, but
won’t bias your inferences (more on this next time)

Olszowy et al., 2019, Nat Comm

https://doi.org/10.1038/s41467-019-09230-w

ï1 0 1

0

100

200

tim
e

(v
ol

um
es

)
stimulus

ï1 0 1

0

100

200

modulator
ï2 0 2

0

100

200

prediction

Parametric
modulators

• Encode modulations of stimulus responses by continuous variables
• SPM solution is one regressor for the stimulus effect and another

mean-centered regressor for each modulator on that response
• Why not just the modulator? Because we don’t want to assume zero

response when modulator=0
• Typical applications: Reinforcement learning (Dolan, O’Doherty), vision

(Gallant), ‘carry-over’ fMRI (Aguirre), fancy grid cell stuff (Behrens)

Orthogonalisation
• If we compare the models Y = task and Y =

task + modu, the beta(task) will explain more
variance when it is the only predictor in the
model

• We can think of beta(task) as being
‘adjusted for modu’ when modu is in the
model

• What about if we orthogonalise modu with
respect to task, ie, we regress out the
contribution of task from modu?

• The modu predictor will change - but
modu’s parameter estimates will stay
exactly the same (counterintuitive but true!)

• The task predictor stays the same - but
beta(task) will change, because all the
shared variance now goes to task

• In effect, beta(task) from the model Y = task +
modu(orth(task)) will be similar to the model Y
= task, but with less residual error

• Same beta but less error = ‘better’ stats
Mumford et al., 2015, PLoS ONE

Y task

Orthogonalisation
• If we compare the models Y = task and Y =

task + modu, the beta(task) will explain more
variance when it is the only predictor in the
model

• We can think of beta(task) as being
‘adjusted for modu’ when modu is in the
model

• What about if we orthogonalise modu with
respect to task, ie, we regress out the
contribution of task from modu?

• The modu predictor will change - but
modu’s parameter estimates will stay
exactly the same (counterintuitive but true!)

• The task predictor stays the same - but
beta(task) will change, because all the
shared variance now goes to task

• In effect, beta(task) from the model Y = task +
modu(orth(task)) will be similar to the model Y
= task, but with less residual error

• Same beta but less error = ‘better’ stats
Mumford et al., 2015, PLoS ONE

task explained
varianceresidual

error

Y task

Orthogonalisation
• If we compare the models Y = task and Y =

task + modu, the beta(task) will be larger
when it is the only predictor in the model

• We can think of beta(task) as being
‘adjusted for modu’ when modu is in the
model

• What about if we orthogonalise modu with
respect to task, ie, we regress out the
contribution of task from modu?

• The modu predictor will change - but
modu’s parameter estimates will stay
exactly the same (counterintuitive but
true!)

• The task predictor stays the same - but
beta(task) will change, because all the
shared variance now goes to task

• In effect, beta(task) from the model Y = task +
modu(orth(task)) will be similar to the model Y
= task, but with less residual error

• Same beta but less error = ‘better’ stats
Mumford et al., 2015, PLoS ONE

task explained
varianceresidual

error

Y task

modu

modu explained
variance

(ie, unique
contribution of modu)

Orthogonalisation
• If we compare the models Y = task and Y =

task + modu, the beta(task) will be larger
when it is the only predictor in the model

• We can think of beta(task) as being
‘adjusted for modu’ when modu is in the
model

• What about if we orthogonalise modu with
respect to task, ie, we regress out the
contribution of task from modu?

• The modu predictor will change - but
modu’s parameter estimates will stay
exactly the same (counterintuitive but
true!)

• The task predictor stays the same - but
beta(task) will change, because all the
shared variance now goes to task

• In effect, beta(task) from the model Y = task +
modu(orth(task)) will be similar to the model Y
= task, but with less residual error

• Same beta but less error = ‘better’ stats
Mumford et al., 2015, PLoS ONE

task explained
varianceresidual

error

Y

modu

task

modu explained
variance

(ie, unique
contribution of modu)

Orthogonalisation
• If we compare the models Y = task and Y =

task + modu, the beta(task) will be larger
when it is the only predictor in the model

• We can think of beta(task) as being
‘adjusted for modu’ when modu is in the
model

• What about if we orthogonalise modu with
respect to task, ie, we regress out the
contribution of task from modu?

• The modu predictor will change - but
modu’s parameter estimates will stay
exactly the same (counterintuitive but
true!)

• The task predictor stays the same - but
beta(task) will change, because all the
shared variance now goes to task

• In effect, beta(task) from the model Y = task +
modu(orth(task)) will be similar to the model Y
= task, but with less residual error

• Same beta but less error = ‘better’ stats
Mumford et al., 2015, PLoS ONE

task explained
variance

shared explained
variance not
attributed to
task or modu

residual
error

Y

modu

task

modu explained
variance

(ie, unique
contribution of modu)

Orthogonalisation
• If we compare the models Y = task and Y =

task + modu, the beta(task) will be larger
when it is the only predictor in the model

• We can think of beta(task) as being
‘adjusted for modu’ when modu is in the
model

• What about if we orthogonalise modu with
respect to task, ie, we regress out the
contribution of task from modu?

• The modu predictor will change - but
modu’s parameter estimates will stay
exactly the same (counterintuitive but
true!)

• The task predictor stays the same - but
beta(task) will change, because all the
shared variance now goes to task

• In effect, beta(task) from the model Y = task +
modu(orth(task)) will be similar to the model Y
= task, but with less residual error

• Same beta but less error = ‘better’ stats
Mumford et al., 2015, PLoS ONE

task explained
variance

shared explained
variance not
attributed to
task or modu

residual
error

modu orth
w.r.t task

Y

modu

task

modu explained
variance

(ie, unique
contribution of modu)

• If we compare the models Y = task and Y =
task + modu, the beta(task) will be larger
when it is the only predictor in the model

• We can think of beta(task) as being
‘adjusted for modu’ when modu is in the
model

• What about if we orthogonalise modu with
respect to task, ie, we regress out the
contribution of task from modu?

• The modu predictor will change - but
modu’s parameter estimates will stay
exactly the same (counterintuitive but
true!)

• The task predictor stays the same - but
beta(task) will change, because all the
shared variance now goes to task

• In effect, beta(task) from the model Y = task +
modu(orth(task)) will be similar to the model Y
= task, but with less residual error

• Same beta but less error = ‘better’ stats

Orthogonalisation

Mumford et al., 2015, PLoS ONE

task explained
variance

shared explained
variance not
attributed to
task or modu

residual
error

Y

modu

task

modu explained
variance

(ie, unique
contribution of modu)

modu orth
w.r.t task

• If we compare the models Y = task and Y =
task + modu, the beta(task) will be larger
when it is the only predictor in the model

• We can think of beta(task) as being
‘adjusted for modu’ when modu is in the
model

• What about if we orthogonalise modu with
respect to task, ie, we regress out the
contribution of task from modu?

• The modu predictor will change - but
modu’s parameter estimates will stay
exactly the same (counterintuitive but
true!)

• The task predictor stays the same - but
beta(task) will change, because all the
shared variance now goes to task

• In effect, beta(task) from the model Y = task +
modu(orth(task)) will be similar to the model
Y = task, but with less residual error

• Same beta but less error = ‘better’ stats

Orthogonalisation

Mumford et al., 2015, PLoS ONE

task explained
variance

shared explained
variance not
attributed to
task or modu

residual
error

Y

modu

task

modu explained
variance

(ie, unique
contribution of modu)

modu orth
w.r.t task

SPM orthogonalisation
quirks • When you have multiple modulators, SPM by default

orthogonalises them sequentially - so the order in which
you enter the modulators in the design matrix is
significant!

• You may not want this ‘feature’ since it really
complicates interpretation

• If you want to change this you will have to hand code
the orthogonalised modulators and add them (disabling
SPM’s own orth).

• Or fit the model twice, taking the second modulator’s
beta from each

Mumford et al., 2015, PLoS ONE

Designing fMRI experiments

Given what we now know about the assumed HRF
shape and the noise model, what kind of design is
most efficient for detecting a hypothesised effect?

Experimental design has a huge effect on detection
power in fMRI — this can make or break your study

Collinearity
• Dependencies between convolved regressors increases the

variance of parameter estimates
• NB, does not bias the fit - but can make it almost impossible

to detect effects (e.g. the single-participant betas that go into
group analysis will be highly variable)

• Big problem in fMRI, since convolution with HRF introduces
dependencies between neighbouring events (e.g., encoding
and recall phase in memory experiment)

• SPM outputs collinearity estimates (see above - basically
predictor correlation matrix). Useful for finding pairs of
dependent conditions. But a bit late to find this out at model fit
stage!

Variance
inflation factor

• Collinearity can also arise over sets of regressors - consider
using variance inflation factor (VIF) to test for this at
experimental design stage

• VIF = 1 / (1-R2) where R2 comes from using all regressors but
one to predict the final regressor

• Typical values:
• VIF=1 for completely orthogonal designs (zero correlation

between prediction and left-out regressor)
• VIF=Inf for rank deficient designs (perfect correlation between

prediction and left-out regressor)
• By convention, VIF>5 indicates a problem (but lower is better)

Design efficiency
• In Matlab code designeff = 1 / trace(c * inv(X’*X) * c’), Where

• c is a matrix of contrasts (here with contrasts stacked in rows)

• X is the convolved and filtered design matrix

• If you’ve seen the formula for calculating standard errors in a GLM, this may
seem familiar… It’s sterr = sqrt(diag(c * inv(X’*X) * c’) * mrss), where mrss
is the mean residual sum of squares (one value per voxel)

• A design with higher design efficiency should produce contrast estimates with
less variance

• Importantly, the contrast estimate won’t be affected, so optimising your
efficiency for a particular contrast doesn’t bias your estimates (although that
contrast will have smaller standard errors and hence smaller p values)

• Caveat: Efficiency is not in meaningful units (it scales with design matrix, and
it’s monotonic but nonlinear with respect to expected standard errors)

• So unlike VIF there are no fixed rules for what is a ‘good’ efficiency

• It’s also not the case that a design with 2x efficiency has exactly 2x power -
but higher efficiency is always associated with increases in power

Typical fMRI designs

Very efficient Very inefficient

Rules of thumb for fMRI design
1. Randomise trial order for each run to minimise collinearity
2. Cluster trials (pseudorandom event-related design or just
block) to keep signal in low frequency band (the HRF
convolution basically low-pass filters the regressor)

3. Don’t put conditions you want to compare too far apart
(>60s) (the de-trend high-pass filters the regressor)

4. Keep the number of conditions as small as possible to
make the above easier (and to enable shorter runs)

5. For differential effects (ie, what you usually care about),
fixed ISI works best

6. For much more on this, see CBU imaging wiki entry on
design efficiency or the associated Henson paper

Useful references
• Rik’s design efficiency wiki: http://imaging.mrc-

cbu.cam.ac.uk/imaging/DesignEfficiency

• Jeanette Mumford’s brain stats blog:
mumfordbrainstats.tumblr.com (see also facebook group)

• The SPM mailing list: https://www.jiscmail.ac.uk/lists/
SPM.html (vast searchable archive)

• Kendrick Kay’s course on Statistics and Data Analysis in
MATLAB: http://kendrickkay.net/psych5007/ (if you want
to roll your own GLM)

http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency
http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency
http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency
http://mumfordbrainstats.tumblr.com
https://www.jiscmail.ac.uk/lists/SPM.html
https://www.jiscmail.ac.uk/lists/SPM.html
http://kendrickkay.net/psych5007/

Workshop time
workshop laptops (using X2Go):

In matlab, type

practical_efficiency

Use cursor to place 20 trials for each condition into the design matrix figure.
Press return/enter when finished to obtain a convolved and filtered design
matrix, with efficiency and VIF estimates.

Repeat as needed

personal laptops (requires Matlab, SPM12):

download workshop materials from

http://imaging.mrc-cbu.cam.ac.uk/methods/IntroductionNeuroimagingLectures
- unzip to directory

In matlab: ensure SPM12 is on your path (addpath spmdir), move to said
directory (cd unzippeddir)

follow above steps for workshop laptops

http://imaging.mrc-cbu.cam.ac.uk/methods/IntroductionNeuroimagingLectures

