fMRI classification analysis:
a conceptual introduction
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Activation-based analysis
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Pattern-information analysis
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Pattern-information analysis

Goal

Determine whether activity patterns elicited by
different conditions are statistically discriminable.

How?
Multivariate analysis of variance (MANOVA)?
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Pattern-information analysis

Goal

Determine whether activity patterns elicited by
different conditions are statistically discriminable.

How?

Approach pattern analysis as a classification problem.



Pattern classification

IF

we can classify the experimental conditions on the
basis of the activity patterns better than chance

THEN

this indicates that the activity pattern carries
information about the experimental conditions.
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Linear classification: the basic idea
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. strong activity
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Linear classification: different classifiers
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Linear classification: minimum-distance
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Linear classification: minimum-distance
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Linear classification: minimum-distance
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Linear classification: minimum-distance
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activity in voxel 2

Linear classification: FLDA
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Linear classification: linear SVM
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Linear classification: linear SVM
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Linear classification: linear SVM
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Boundary placement: some more detail
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Boundary placement: some more detail
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Boundary placement: some more detail

assumes identical and
isotropic distributions

activity in voxel 2
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Fisher linear discriminant

assumes identical and
multivariate normal
distributions

no assumptions
about
distributions



Can we do better?
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Pattern = signal + noise
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Pattern = signal + noise
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Overfitting

After determining the decision boundary, we need to
test how well the boundary generalises to new data

(cross validation).
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Overfitting

After determining the decision boundary, we need to
test how well the boundary generalises to new data
(cross validation).

Linear classifiers usually perform better on fMRI data
than nonlinear classifiers.

Overfitting can be further reduced by:
e regularisation

e dimensionality reduction of the activity patterns (e.g.
voxel selection)



Applications: visual WM

Decoding reveals the contents of visual working
memory in early visual areas

Stephenie A. Harrison' & Frank Tong' @ Response
Test
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Cue [0 500 ms

2
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Applications: visual WM
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Applications: visual WM
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Step 1a: split data

full data set

Make sure that training and test data are independent.



Step 1b: preprocess

As usual:
e slice-scan-time correction

e motion-correction

Optional:

 normalisation to template (if random-effects
searchlight analysis across subjects)

e spatial smoothing (to increase signal, sensitive to
larger-scale spatial patterns)
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Step 2: estimate single-subject activity
patterns

training data set
(e.g. runs 1-3)

data

t patterns
preferred over
beta patterns
(Misaki et al.
2010)
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Step 3: select voxels

Make sure that voxel selection is based on data
independent from test data set.

Most common ways of voxel selection:
e structural selection (anatomy)
e functional selection (activity)

O univariate (activation differences)

O multivariate (pattern differences)

e geometrical selection

O multivoxel searchlight



Step 3: select voxels
anatomy

For example:
subject 1 hippocampus

subject 2

. subject n



Step 3: select voxels

function (activation differences)
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Step 3: select voxels
multivoxel searchlight
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Step 3: select voxels
multivoxel searchlight




Step 3: select voxels
multivoxel searchlight

Kriegeskorte et al. 2006



Step 3: select voxels

How many voxels?
Depends on the expected spatial extent of effects.

Find the right balance:
too few > risk of missing signal
too many -2 risk of overfitting (too noisy)

Common practice: select the same number of voxels in
each subject.



Step 3: select voxels
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Step 3: select voxels
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Step 3: select voxels

single-subject
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Step 4: train the classifier
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Step 4: train the classifier
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Step 5: test the classifier

L N,

™ voxel 1




Step 5: test the classifier

NOZ=" voxel 1

classification accuracy
for this fold = 100%



Cross-validation: generalise to....?

e different run (leave-run-out)
o different subject (leave-subject-out)
o different stimulus pair (leave-stimulus-pair-out)

o different block/trial within run (leave-block/trial-out)

Common procedure: use each run/subject etc as test
data once.

For example: 4 runs = repeat cross validation 4 times
(= 4-fold cross validation) = average accuracy across
the 4 folds.
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Step 6: statistical inference

If number of subjects > 20:

Random-effects analysis across subjects using a
standard one-sample right-sided t test.

Ho: L =50%

H.: u>50%



Step 6: statistical inference

single-subject
classification accuracy

error bars error bar
= standard error = standard error

across folds across subjects



Step 6: statistical inference

subject-average
classification accuracy
100%

student’s t distribution
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Step 6: statistical inference

If number of subjects <20:

We cannot assume a t distribution (central limit
theorem does not apply)
— use a permutation test: create a null distribution
by randomly shuffling the condition labels during

training.



Step 6: statistical inference
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Step 6: statistical inference

training data set test data set
(e.g. runs 1-3) (e.g. run 4)

= w (0001 [

> > > time —_—> time
run 1 run 2 run 3 run 4

Remove the
relationship
between conditions
and patterns.



Step 6: statistical inference

Repeat step 2 — 5 after randomly reshuffling the
condition labels.

step 2: estimate single-subject activity patterns
step 3: select voxels
step 4: train the classifier

O O O O

step 5: test the classifier

Do this many (e.g. 1000) times to create a null
distribution.



Step 6: statistical inference
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Step 6: statistical inference

frequency
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Step 6: statistical inference

null distribution
of subject-average
classification accuracy

500

frequency

250 |

40% 50% 60%

If the actual subject-average classification
accuracy falls within the top 5% (blue) of
the null distribution = reject H,,.



Applications: voice and speech

“Who" Is Saying “What"? Brain-Based
Decoding of Human Voice and Speech

Elia Formisano,* Federico De Martino, Milene Bonte, Rainer Goebel

Vowel

Speaker



Applications: voice and speech
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Applications: decision making

Reading Hidden Intentions
In the Human Brain

Geraint Rees,*® Sam Gilbert,* Chris Frith,*
and Richard E. Passingham®’

Free task selection [addition wersus subtraction)

select Task stimuli
Response
5:5 mapping
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Applications: decision making
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Toolboxes

e PRoNTo (SPM)

http://www.mlinl.cs.ucl.ac.uk/pronto/

 LIBSVM

http://www.csie.ntu.edu.tw/"’cjlin/libsvm/

* PYMVPA
http://www.pymvpa.org/



http://www.mlnl.cs.ucl.ac.uk/pronto/prtsoftware.html
http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/
http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/
http://www.pymvpa.org/
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Literature

Linear classification tutorials
Mur M et al. (2009) Soc Cogn Affect Neurosci 4: 101-109. [conceptual introduction]
Pereira F et al. (2009) Neuroimage 45(1 Suppl): S199-S209. [introduction]

Schreiber K, Krekelberg B (2013) PLoS ONE 8(7): e69328. [cautionary comments on
statistical inference]

Kriegeskorte N et al. (2006) PNAS 103(10): 3863-3868. [multivariate searchlight]

Linear classification reviews
Norman KA et al. (2006) Trends Cogn Sci 10(9): 424-430.
Haynes JD, Rees G (2006) Nat Rev Neurosci 7: 523-534.

Linear classification: applications in neuroscience

Kamitani Y, Tong F (2005) Nat Neurosci 8(5): 679-685. [vision: classify orientations]
Formisano E et al. (2008) Science 322: 970-973. [voices: classify speakers & vowels]
Haynes JD et al. (2007) Curr Biol 17(4): 323-328. [cognitive control: task preparation]



Literature

Recursive feature elimination (RFE)

De Martino F et al. (2008) Neuroimage 43: 44-58.
Kernels

Jakel F et al. (2009) Trends Cogn Sci 13: 381-388.

Which classifiers & preprocessing options are best?

Mourao-Miranda J et al. (2005) Neuroimage 28: 980-995. [SVIM vs FLDA]

Kriegeskorte et al. (2009) Nat Neurosci 12(5): 535-540. [how to prevent selection bias]
Misaki M et al. (2010) Neuroimage 53: 103-118. [compares 6 different classifiers]
Garrido L et al. (2013) Front Neurosci 7(174): 1-4. [subtract the mean pattern?]

Relationships between classification (decoding), encoding, and RSA
Naselaris T et al. (2011) Neuroimage 56: 400-410.
Kriegeskorte N (2011) Neuroimage 56: 411-421.



Example data set: Haxby et al. 2001

Distributed and Overlapping
Representations of Faces and
Objects in Ventral Temporal

Cortex

James V. Haxby,'* M. Ida Gobbini,’ Maura L. Furey,’-?
Alumit Ishai,’ Jennifer L. Schouten,? Pietro Pietrini®




Example data set: Haxby et al. 2001

A
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a B Difference from mean response
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Example data set: Haxby et al. 2001

Can we discriminate faces and houses based on their
whole-brain activity patterns?

Use a linear SVM in PRoNTo.



Set-up your laptop for the demo

To open matlab:
e QOpen terminal
e Type cdw

e Type matlab

Type in matlab:

e mkdir('/imaging/trainXXlinux/Workshop/Material/pronto/')

e addpath(genpath('/imaging/trainXXlinux/Workshop/Material/'))
e addpath(‘/hpc-software/matlab/r2009a/toolbox/stats/’)

e pronto
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